Please use this identifier to cite or link to this item: https://doi.org/10.1007/978-3-642-40285-2_36
Title: Force-directed layout community detection
Authors: Song, Y.
Bressan, S. 
Issue Date: 2013
Source: Song, Y.,Bressan, S. (2013). Force-directed layout community detection. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) 8055 LNCS (PART 1) : 419-427. ScholarBank@NUS Repository. https://doi.org/10.1007/978-3-642-40285-2_36
Abstract: We propose a graph-layout based method for detecting communities in networks. We first project the graph onto a Euclidean space using Fruchterman-Reingold algorithm, a force-based graph drawing algorithm. We then cluster the vertices according to Euclidean distance. The idea is a form of dimension reduction. The graph drawing in two or more dimensions provides a heuristic decision as whether vertices are connected by a short path approximated by their Euclidean distance. We study community detection for both disjoint and overlapping communities. For the case of disjoint communities, we use k-means clustering. For the case of overlapping communities, we use fuzzy-c means algorithm. We evaluate the performance of our different algorithms for varying parameters and number of iterations. We compare the results to several state of the art community detection algorithms, each of which clusters the graph directly or indirectly according to geodesic distance. We show that, for non-trivially small graphs, our method is both effective and efficient. We measure effectiveness using modularity when the communities are not known in advance and precision when the communities are known in advance. We measure efficiency with running time. The running time of our algorithms can be controlled by the number of iterations of the Fruchterman-Reingold algorithm. © 2013 Springer-Verlag.
Source Title: Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
URI: http://scholarbank.nus.edu.sg/handle/10635/78150
ISBN: 9783642402845
ISSN: 03029743
DOI: 10.1007/978-3-642-40285-2_36
Appears in Collections:Staff Publications

Show full item record
Files in This Item:
There are no files associated with this item.

SCOPUSTM   
Citations

3
checked on Feb 12, 2018

Page view(s)

91
checked on Feb 16, 2018

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.