Please use this identifier to cite or link to this item:
Title: Sequence-selective recognition of nucleic acids under extremely low salt conditions using nanoparticle probes
Authors: Zu, Y.
Ting, A.L.
Yi, G.
Gao, Z. 
Issue Date: 1-Jun-2011
Citation: Zu, Y., Ting, A.L., Yi, G., Gao, Z. (2011-06-01). Sequence-selective recognition of nucleic acids under extremely low salt conditions using nanoparticle probes. Analytical Chemistry 83 (11) : 4090-4094. ScholarBank@NUS Repository.
Abstract: Extensive secondary structures in nucleic acid targets seriously impede the binding of complementary oligonucleotide probes. We report here a method to conduct the detection under extremely low salt conditions where the secondary structures are less stable and more accessible. A new type of nanoparticle probes prepared by functionalizing gold nanoparticles with nonionic morpholino oligos is employed. Because of the salt-independent hybridization of the probes with nucleic acid targets, nanoparticle assemblies can be formed in 2 mM Tris buffer solutions containing 0-5 mM NaCl, leading to the colorimetric target recognition. The sharp melting transitions of the target-probe hybrids allow discrimination of single-base imperfection, including substitution, deletion, and insertion. The method works effectively in detecting sequences that are likely to form secondary structure. In addition, the study provides direct evidence of the relationship between the aggregate structure and the melting behavior of the DNA-linked nanoparticles. © 2011 American Chemical Society.
Source Title: Analytical Chemistry
ISSN: 00032700
DOI: 10.1021/ac2001516
Appears in Collections:Staff Publications

Show full item record
Files in This Item:
There are no files associated with this item.


checked on Jan 12, 2019


checked on Jan 2, 2019

Page view(s)

checked on Dec 15, 2018

Google ScholarTM



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.