Please use this identifier to cite or link to this item: https://doi.org/10.1021/ac101519v
Title: Direct voltammetric detection of DNA and pH sensing on epitaxial graphene: An insight into the role of oxygenated defects
Authors: Lim, C.X.
Hoh, H.Y.
Ang, P.K. 
Loh, K.P. 
Issue Date: 1-Sep-2010
Citation: Lim, C.X., Hoh, H.Y., Ang, P.K., Loh, K.P. (2010-09-01). Direct voltammetric detection of DNA and pH sensing on epitaxial graphene: An insight into the role of oxygenated defects. Analytical Chemistry 82 (17) : 7387-7393. ScholarBank@NUS Repository. https://doi.org/10.1021/ac101519v
Abstract: In this paper, we carried out detailed electrochemical studies of epitaxial graphene (EG) using inner-sphere and outer-sphere redox mediators. The EG sample was anodized systematically to investigate the effect of edge plane defects on the heterogeneous charge transfer kinetics and capacitive noise. We found that anodized EG, consisting of oxygen-related defects, is a superior biosensing platform for the detection of nucleic acids, uric acids (UA), dopamine (DA), and ascorbic acids (AA). Mixtures of nucleic acids (A, T, C, G) or biomolecules (AA, UA, DA) can be resolved as individual peaks using differential pulse voltammetry. In fact, an anodized EG voltammetric sensor can realize the simultaneous detection of all four DNA bases in double stranded DNA (dsDNA) without a prehydrolysis step, and it can also differentiate single stranded DNA from dsDNA. Our results show that graphene with high edge plane defects, as opposed to pristine graphene, is the choice platform in high resolution electrochemical sensing. © 2010 American Chemical Society.
Source Title: Analytical Chemistry
URI: http://scholarbank.nus.edu.sg/handle/10635/75962
ISSN: 00032700
DOI: 10.1021/ac101519v
Appears in Collections:Staff Publications

Show full item record
Files in This Item:
There are no files associated with this item.

SCOPUSTM   
Citations

159
checked on Jul 10, 2018

WEB OF SCIENCETM
Citations

158
checked on Jun 26, 2018

Page view(s)

33
checked on Apr 20, 2018

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.