Please use this identifier to cite or link to this item:
https://doi.org/10.1109/EPTC.2011.6184478
Title: | Experimental investigation of microgap cooling technology for minimizing temperature gradient and mitigating hotspots in electronic devices | Authors: | Alam, T. Lee, P.S. Yap, C.R. Jin, L. |
Issue Date: | 2011 | Citation: | Alam, T.,Lee, P.S.,Yap, C.R.,Jin, L. (2011). Experimental investigation of microgap cooling technology for minimizing temperature gradient and mitigating hotspots in electronic devices. 2011 IEEE 13th Electronics Packaging Technology Conference, EPTC 2011 : 530-535. ScholarBank@NUS Repository. https://doi.org/10.1109/EPTC.2011.6184478 | Abstract: | Hotspots can be generated by non-uniform heat flux condition over the heated surface due to higher packaging densities and greater power consumption of high-performance computing technology in military systems designs. Because of this hotspot within a given chip, local heat generation rate exceed the average value on the chip and increase the peak temperature for a given total power generation which degrades the reliability and performance of equipments. Two phase microgap cooling technology is promising to minimization of temperature gradient and reduction of maximum temperature over the heated surface of the device because of unique boiling mechanism in microgap: confined flow and thin film evaporation. The present study aims to experimentally investigate the applicability of microgap cooling technology for minimizining temperature gradient and mitigating hotspots from the heated surface of electronic device. Experiments are performed in silicon based microgap heat sink having a range of gap dimension from 200 μm - 400 μm. Encouraging results have been obtained using microgap channel cooler for hotspots mitigation as it maintain uniform and low wall temperature over the heated surface. © 2011 IEEE. | Source Title: | 2011 IEEE 13th Electronics Packaging Technology Conference, EPTC 2011 | URI: | http://scholarbank.nus.edu.sg/handle/10635/73448 | ISBN: | 9781457719837 | DOI: | 10.1109/EPTC.2011.6184478 |
Appears in Collections: | Staff Publications |
Show full item record
Files in This Item:
There are no files associated with this item.
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.