Please use this identifier to cite or link to this item: http://scholarbank.nus.edu.sg/handle/10635/73304
Title: Damping characterization of bulk nanostructured nickel using an innovative circle-fit approach: Effect of frequency
Authors: Srikanth, N.
Thein, M.A.
Gupta, M. 
Keywords: Anelasticity
Damping
Nanocrystalline Material
Nickel
Plasticity
Issue Date: 2005
Source: Srikanth, N.,Thein, M.A.,Gupta, M. (2005). Damping characterization of bulk nanostructured nickel using an innovative circle-fit approach: Effect of frequency. Journal of Metastable and Nanocrystalline Materials 23 : 155-158. ScholarBank@NUS Repository.
Abstract: In the present study, elemental Ni powder was mechanically milled (MMed) for 10 hours to reduce the grain (crystalline) size in the nano-range (<100nm). The mechanically milled powder (10h-MMed) was consolidated by die-cold compaction and was further hot extruded at high temperatures to maintain a crystallite size within the nano range. Further, the specimen was tested by a novel free-free type suspended beam arrangement, coupled with circle-fit approach to determine damping characteristics. To vary the resonant frequency of the suspended beam, end masses with different weights were added. The characterization results revealed that the nano-size grains exhibit increased damping compared to a coarse-grained sample, under similar vibration frequency. Results also show that the damping capacity of both nano and coarse grained samples decreases with an increase in frequency of vibration. Particular emphasis was placed to correlate the damping capacity with the process induced residual stresses present in the samples.
Source Title: Journal of Metastable and Nanocrystalline Materials
URI: http://scholarbank.nus.edu.sg/handle/10635/73304
ISSN: 14226375
Appears in Collections:Staff Publications

Show full item record
Files in This Item:
There are no files associated with this item.

Page view(s)

35
checked on Dec 9, 2017

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.