Please use this identifier to cite or link to this item:
https://scholarbank.nus.edu.sg/handle/10635/71683
Title: | Robust PCA in high-dimension: A deterministic approach | Authors: | Feng, J. Xu, H. Yan, S. |
Issue Date: | 2012 | Citation: | Feng, J.,Xu, H.,Yan, S. (2012). Robust PCA in high-dimension: A deterministic approach. Proceedings of the 29th International Conference on Machine Learning, ICML 2012 1 : 249-256. ScholarBank@NUS Repository. | Abstract: | We consider principal component analysis for contaminated data-set in the high dimensional regime, where the dimensionality of each observation is comparable or even more than the number of observations. We propose a deterministic high-dimensional robust PCA algorithm which inherits all theoretical properties of its randomized counterpart, i.e., it is tractable, robust to contaminated points, easily kernelizable, asymptotic consistent and achieves maximal robustness - a breakdown point of 50%. More importantly, the proposed method exhibits significantly better computational efficiency, which makes it suitable for large-scale real applications. Copyright 2012 by the author(s)/owner(s). | Source Title: | Proceedings of the 29th International Conference on Machine Learning, ICML 2012 | URI: | http://scholarbank.nus.edu.sg/handle/10635/71683 | ISBN: | 9781450312851 |
Appears in Collections: | Staff Publications |
Show full item record
Files in This Item:
There are no files associated with this item.
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.