Please use this identifier to cite or link to this item: https://doi.org/10.1109/ACC.2007.4282595
Title: On learning wavelet control for affine nonlinear systems
Authors: Xu, J.-X. 
Yan, R.
Wang, W.
Issue Date: 2007
Source: Xu, J.-X.,Yan, R.,Wang, W. (2007). On learning wavelet control for affine nonlinear systems. Proceedings of the American Control Conference : 1287-1292. ScholarBank@NUS Repository. https://doi.org/10.1109/ACC.2007.4282595
Abstract: Function Approximation has been proven to be an effective approach when dealing with nonlinear dynamics. Among numerous function approximation methods, wavelet network shows unique advantage in terms of its orthonormality and multi-layer resolution properties, which enable the on-line tuning or closed-loop tuning for the wavelet network structure. Using such a constructive wavelet network, an adaptive iterative learning control approach was proposed for finite interval tracking problems [1]. In this work, the adaptive learning control approach with wavelet approximation (denoted by learning wavelet control or LWC) is applied two general classes of plants affine-in-input. One class is with nonlinear unknown input coefficient, and the other class is in cascade form. With the help of Lyapunov method, the learning convergence properties of the adaptive learning control system can be analyzed while the wavelet network undergoes on-line structure adaptation. © 2007 IEEE.
Source Title: Proceedings of the American Control Conference
URI: http://scholarbank.nus.edu.sg/handle/10635/71209
ISBN: 1424409888
ISSN: 07431619
DOI: 10.1109/ACC.2007.4282595
Appears in Collections:Staff Publications

Show full item record
Files in This Item:
There are no files associated with this item.

SCOPUSTM   
Citations

4
checked on Jan 22, 2018

Page view(s)

33
checked on Jan 19, 2018

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.