Please use this identifier to cite or link to this item: http://scholarbank.nus.edu.sg/handle/10635/71033
Title: Multi-agent systems on sensor networks: A distributed reinforcement learning approach
Authors: Tham, C.-K. 
Renaud, J.-C.
Issue Date: 2005
Source: Tham, C.-K.,Renaud, J.-C. (2005). Multi-agent systems on sensor networks: A distributed reinforcement learning approach. Proceedings of the 2005 Intelligent Sensors, Sensor Networks and Information Processing Conference 2005 : 423-429. ScholarBank@NUS Repository.
Abstract: Implementing a multi-agent system (MAS) on a wireless sensor network comprising sensor-actuator nodes with processing capability enables these nodes to perform tasks in a coordinated manner to achieve some desired system-wide objective. In this paper, several distributed reinforcement learning (DRL) algorithms used in MAS are described. Next, we present our experience and results from the implementation of these DRL algorithms on actual Berkeley motes in terms of communication, computation and energy costs, and speed of convergence to optimal policies. We investigate whether globally optimal or merely locally optimal policies are achieved. Finally, we discuss the trade-offs that are necessary when employing DRL algorithms for coordinated decision-making tasks in resource-constrained wireless sensor networks. © 2005 IEEE.
Source Title: Proceedings of the 2005 Intelligent Sensors, Sensor Networks and Information Processing Conference
URI: http://scholarbank.nus.edu.sg/handle/10635/71033
ISBN: 0780393996
Appears in Collections:Staff Publications

Show full item record
Files in This Item:
There are no files associated with this item.

Page view(s)

26
checked on Dec 9, 2017

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.