Please use this identifier to cite or link to this item: https://doi.org/10.1109/ICIEA.2012.6360911
Title: Feature selection for tool wear monitoring: A comparative study
Authors: Geramifard, O.
Xu, J.-X. 
Zhou, J.-H.
Li, X.
Gan, O.P.
Issue Date: 2012
Source: Geramifard, O.,Xu, J.-X.,Zhou, J.-H.,Li, X.,Gan, O.P. (2012). Feature selection for tool wear monitoring: A comparative study. Proceedings of the 2012 7th IEEE Conference on Industrial Electronics and Applications, ICIEA 2012 : 1230-1235. ScholarBank@NUS Repository. https://doi.org/10.1109/ICIEA.2012.6360911
Abstract: One of the challenging tasks in the domain of Tool Condition Monitoring (TCM) is feature selection. Feature selection is crucial as extracting all possible features and creating a model based on those features results in two major disadvantages, i.e. high computational cost and inefficient complexity of the model, which leads to overfitting. In this paper, four statistical feature selection methods are applied to the TCM problem in a CNC-milling machine. These methods are Ridge Regression (RR), Principal Component Regression (PCR), Least Absolute Shrinkage and Selection Operator (LASSO), and Fisher's Discriminant Ratio (FDR). Applicability of these methods are compared based on their diagnostic results in two cases using a single Hidden Markov Model (HMM) approach. © 2012 IEEE.
Source Title: Proceedings of the 2012 7th IEEE Conference on Industrial Electronics and Applications, ICIEA 2012
URI: http://scholarbank.nus.edu.sg/handle/10635/70325
ISBN: 9781457721175
DOI: 10.1109/ICIEA.2012.6360911
Appears in Collections:Staff Publications

Show full item record
Files in This Item:
There are no files associated with this item.

SCOPUSTM   
Citations

2
checked on Nov 29, 2017

Page view(s)

26
checked on Dec 9, 2017

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.