Please use this identifier to cite or link to this item: https://doi.org/10.1109/IECON.2004.1432212
Title: Comparative study of PCA approaches in process monitoring and fault detection
Authors: Tien, D.X.
Lim, K.-W. 
Jun, L.
Issue Date: 2004
Citation: Tien, D.X.,Lim, K.-W.,Jun, L. (2004). Comparative study of PCA approaches in process monitoring and fault detection. IECON Proceedings (Industrial Electronics Conference) 3 : 2594-2599. ScholarBank@NUS Repository. https://doi.org/10.1109/IECON.2004.1432212
Abstract: This paper suggests an alternative scaling approach to PCA analysis for monitoring industrial processes. It also compares performance of the proposed moving PCA (MPCA) and three other PCA-based approaches including conventional PCA, adaptive PCA and exponentially weighted PCA, on a well known simulation model of an industrial plant and on data obtained from a petrochemical plant over a period of X months. The result showed that MPCA, which uses the mean and standard deviation of a moving window for scaling purpose, appeared to outperform the other three methods in monitoring processes with/without changes in operating conditions/set-points. While a conventional PCA seemed to work satisfactorily with the Tennessee Eastman Process (TEP) simulation, its performance was much poorer on the industrial data set. This comparison demonstrates that a degree of adaptation in scaling parameters is necessary for PCA-based approaches, especially for processes with multi operating modes. © 2004 IEEE.
Source Title: IECON Proceedings (Industrial Electronics Conference)
URI: http://scholarbank.nus.edu.sg/handle/10635/69650
DOI: 10.1109/IECON.2004.1432212
Appears in Collections:Staff Publications

Show full item record
Files in This Item:
There are no files associated with this item.

SCOPUSTM   
Citations

30
checked on Oct 23, 2018

Page view(s)

57
checked on Oct 6, 2018

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.