Please use this identifier to cite or link to this item: https://doi.org/10.1109/BIBE.2007.4375747
Title: An HV-SVM classifier to infer TF-TF interactions using protein domains and GO annotations
Authors: Li, X.-L.
Veeravalli, B. 
Lee, J.-X.
Ng, S.-K.
Keywords: GO annotations
Protein domains
Support vector machine
Transcription factor
Issue Date: 2007
Citation: Li, X.-L.,Veeravalli, B.,Lee, J.-X.,Ng, S.-K. (2007). An HV-SVM classifier to infer TF-TF interactions using protein domains and GO annotations. Proceedings of the 7th IEEE International Conference on Bioinformatics and Bioengineering, BIBE : 1360-1364. ScholarBank@NUS Repository. https://doi.org/10.1109/BIBE.2007.4375747
Abstract: Interactions between transcription factors (TFs) are necessary for deciphering the complex mechanisms of transcription regulation in eukaryotes. In this paper, we proposed a novel HV-kernel based Support Vector Machine classifier (HV-SVM) to predict TF-TF interactions based on their protein domain information and GO annotations. Specifically, two types of pairwise kernels, namely, a horizontal kernel and a vertical kernel, were combined to evaluate the similarity between a pair of TFs, and a Genetic algorithm was used to obtain kernel and feature weights to optimize the classifier's performance. We applied our proposed HV-SVM method to predict TF interactions for Homo sapiens and Mus muculus. We obtained accuracy and F-measures of over 85% and an AUC of almost 93%, demonstrating that HV-SVM can accurately predict TF-TF interactions even in the higher and more complex eukaryotes. ©2007 IEEE.
Source Title: Proceedings of the 7th IEEE International Conference on Bioinformatics and Bioengineering, BIBE
URI: http://scholarbank.nus.edu.sg/handle/10635/69319
ISBN: 1424415098
DOI: 10.1109/BIBE.2007.4375747
Appears in Collections:Staff Publications

Show full item record
Files in This Item:
There are no files associated with this item.

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.