Please use this identifier to cite or link to this item: https://doi.org/10.1002/(SICI)1099-0488(19991101)37:21<3084
Title: Effects of monomer structures on the evolution of liquid-crystal texture and crystallization during thin-film polymerization
Authors: Cheng, S.-X.
Chung, T.-S. 
Mullick, S.
Issue Date: 1-Nov-1999
Source: Cheng, S.-X.,Chung, T.-S.,Mullick, S. (1999-11-01). Effects of monomer structures on the evolution of liquid-crystal texture and crystallization during thin-film polymerization. Journal of Polymer Science, Part B: Polymer Physics 37 (21) : 3084-3096. ScholarBank@NUS Repository. https://doi.org/10.1002/(SICI)1099-0488(19991101)37:21<3084
Abstract: We investigated in situ the effects of monomer structures on the formation and evolution of liquid-crystal texture and crystallization during thin-film polymerization of a series of liquid-crystalline and crystalline polymers. The monomers used in this study consisted of 2,6-acetoxynaphtoic acid (ANA), p-acetoxybenzoic acid (ABA), acetoxy acetanilide (AAA), and isophthalic acid (IA). The polycondensation reactions were conducted on the heating stage of a polarizing microscope. The formation of liquid crystallinity was found to be strongly dependent on the straight-monomer structures of ANA and ABA and their percentages as well as the reaction temperature. For the ANA/AAA/IA and ABA/AAA/IA reaction systems, the critical straight-monomer content (ANA or ABA) existed to form the liquid crystalline (LC) state. Interestingly, the critical content to form liquid crystallinity decreased with an increase in the reaction temperature. Above the critical content, the appearance of a defective LC phase and the annihilation of disclinations were observed during the polycondensation reactions. The number of defects decreased with increasing reaction time through annihilation. The annihilation rate increased whereas the defect density decreased with increasing straight-monomer content. For the same molar ratio, the reaction system containing ANA had a faster annihilation rate than that containing ABA. Below the critical content, crystalline polymers were formed. Nucleation and crystal growth were observed during the reactions, and the rate of crystal growth decreased with increasing ANA or ABA content. For the systems having the same molar ratio of ANA or ABA, the ANA/AAA/IA system had a higher tendency to yield the LC phase than the ABA/AAA/IA system because ANA has a longer mesogenic unit.
Source Title: Journal of Polymer Science, Part B: Polymer Physics
URI: http://scholarbank.nus.edu.sg/handle/10635/66567
ISSN: 08876266
DOI: 10.1002/(SICI)1099-0488(19991101)37:21<3084
Appears in Collections:Staff Publications

Show full item record
Files in This Item:
There are no files associated with this item.

Page view(s)

25
checked on Dec 14, 2017

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.