Please use this identifier to cite or link to this item: https://scholarbank.nus.edu.sg/handle/10635/66504
Title: Connectedness-in-probability and continuum percolation of adhesive hard spheres: Integral equation theory
Authors: Chiew, Y.C. 
Issue Date: 1-Jun-1999
Citation: Chiew, Y.C. (1999-06-01). Connectedness-in-probability and continuum percolation of adhesive hard spheres: Integral equation theory. Journal of Chemical Physics 110 (21) : 10482-10486. ScholarBank@NUS Repository.
Abstract: Integral equation theory was employed to study continuum percolation and clustering of adhesive hard spheres based on a "connectedness-in-probability" criterion. This differs from earlier studies in that an "all-or-nothing" direct connectivity criterion was used. The connectivity probability may be regarded as a "hopping probability" that describes excitation that passes from one particle to another in complex fluids and dispersions. The connectivity Ornstein-Zernike integral equation was solved for analytically in the Percus-Yevick approximation. Percolation transitions and mean size of particle clusters were obtained as a function of connectivity probability, stickiness parameter, and particle density. It was shown that the pair-connectedness function follows a delay-differential equation which yields analytical expressions in the Percus-Yevick theory. © 1999 American Institute of Physics.
Source Title: Journal of Chemical Physics
URI: http://scholarbank.nus.edu.sg/handle/10635/66504
ISSN: 00219606
Appears in Collections:Staff Publications

Show full item record
Files in This Item:
There are no files associated with this item.

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.