Please use this identifier to cite or link to this item:
Title: Fuel cell model reduction through the spatial smoothing of flow channels
Authors: Ly, H.
Birgersson, E. 
Vynnycky, M.
Keywords: 2D
Fuel cell
Mathematical modeling
Model reduction
Spatial smoothing
Issue Date: May-2012
Source: Ly, H., Birgersson, E., Vynnycky, M. (2012-05). Fuel cell model reduction through the spatial smoothing of flow channels. International Journal of Hydrogen Energy 37 (9) : 7779-7795. ScholarBank@NUS Repository.
Abstract: A commonly invoked postulate in fuel cell modeling involves solving for a two-dimensional (2D) instead of a three-dimensional geometry (3D). Often, however, this postulate affects the fidelity of model predictions, since not all geometrical features are captured. To achieve such a reduction in dimensionality, we introduce a methodology based on spatial smoothing over the flow channels in the flow field, coupled with correlations that account for variations in pathways due to ribs. The derived mathematical framework is demonstrated on a flow field comprising parallel flow channels, and verified for a detailed, mechanistic fuel cell model: overall, good agreement is achieved. Finally, we highlight how one can account for other types of flow channels and how a spatially smoothed 2D model that captures the main geometrical design parameters of a 3D counterpart can be solved in seconds. The latter opens up avenues for mechanistic modeling of large fuel cell stacks. Copyright © 2012, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights reserved.
Source Title: International Journal of Hydrogen Energy
ISSN: 03603199
DOI: 10.1016/j.ijhydene.2012.01.129
Appears in Collections:Staff Publications

Show full item record
Files in This Item:
There are no files associated with this item.


checked on Dec 6, 2017


checked on Nov 21, 2017

Page view(s)

checked on Dec 10, 2017

Google ScholarTM



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.