Please use this identifier to cite or link to this item: https://doi.org/10.1116/1.2137333
Title: Application of molecular dynamics for low-energy ion implantation in crystalline silicon
Authors: Chan, H.Y.
Srinivasan, M.P. 
Montgomery, N.J.
Mulcahy, C.P.A.
Biswas, S.
Gossmann, H.-J.L.
Harris, M.
Nordlund, K.
Benistant, F.
Ng, C.M.
Gui, D.
Chan, L.
Issue Date: Jan-2006
Source: Chan, H.Y., Srinivasan, M.P., Montgomery, N.J., Mulcahy, C.P.A., Biswas, S., Gossmann, H.-J.L., Harris, M., Nordlund, K., Benistant, F., Ng, C.M., Gui, D., Chan, L. (2006-01). Application of molecular dynamics for low-energy ion implantation in crystalline silicon. Journal of Vacuum Science and Technology B: Microelectronics and Nanometer Structures 24 (1) : 462-467. ScholarBank@NUS Repository. https://doi.org/10.1116/1.2137333
Abstract: Molecular dynamics (MD) is set to replace Monte Carlo (MC) methods utilizing the binary collision approximation (BCA) in modeling dopant distributions after ion implantation in the low energy regime. Simultaneous nonbinary interactions come into play as the ion slows down; unlike BCA, MD automatically accounts for multiple collisions between ion and its neighboring atoms. In this work, the energy limit below which BCA fails is estimated from density functional theory (DFT) calculations for a wide range of dopants. Impurity profiles are generated using the MD code, MDRANGE. A database consisting of secondary ion mass spectrometry (SIMS) profiles covering a wide range of dopants (B, C, F, N, P, As, Ge, In, and Sb) over the energy regime of 0.5-10 keV at critical channeling directions have been set up. The MD simulated profiles show good agreement with SIMS data, which have been obtained either with a quadrupole-or magnetic-sector-based mass spectrometer. © 2006 American Vacuum Society.
Source Title: Journal of Vacuum Science and Technology B: Microelectronics and Nanometer Structures
URI: http://scholarbank.nus.edu.sg/handle/10635/63500
ISSN: 10711023
DOI: 10.1116/1.2137333
Appears in Collections:Staff Publications

Show full item record
Files in This Item:
There are no files associated with this item.

SCOPUSTM   
Citations

2
checked on Dec 7, 2017

WEB OF SCIENCETM
Citations

2
checked on Nov 22, 2017

Page view(s)

32
checked on Dec 10, 2017

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.