Please use this identifier to cite or link to this item:
https://scholarbank.nus.edu.sg/handle/10635/62192
Title: | Fault noise based approach to phase selection using wavelets based feature extraction | Authors: | Liao, Y. Elangovan, S. |
Issue Date: | Mar-1999 | Citation: | Liao, Y.,Elangovan, S. (1999-03). Fault noise based approach to phase selection using wavelets based feature extraction. Electric Machines and Power Systems 27 (4) : 389-398. ScholarBank@NUS Repository. | Abstract: | Fault-generated high-frequency noise has been proven to be effective for faulted phase selection. A combined method using HF noise, fast Fourier transform (FFT), and neural networks (NN) for phase selection has been proposed previously; however, FFT and NN have some implicit disadvantages. This paper describes a HF noise based method for phase selection using wavelets based feature extraction. It is shown that the features extracted by wavelets transform (WT) have a more distinctive property than those extracted by FFT due to the good time and frequency localization characteristics of WT. As a result, the proposed method dispenses with the neural networks and hence is more reliable and simpler than the previous FFT-based method. Extensive simulation studies have been made to verify that the proposed approach is very powerful and apropos to phase selection. | Source Title: | Electric Machines and Power Systems | URI: | http://scholarbank.nus.edu.sg/handle/10635/62192 | ISSN: | 0731356X |
Appears in Collections: | Staff Publications |
Show full item record
Files in This Item:
There are no files associated with this item.
Google ScholarTM
Check
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.