Please use this identifier to cite or link to this item: https://doi.org/10.1364/AO.48.001990
Title: Vibration measurement of a miniature component by high-speed image-plane digital holographic microscopy
Authors: Yu, F. 
Hongjian, S. 
Hong, M.
Issue Date: 10-Apr-2009
Source: Yu, F., Hongjian, S., Hong, M. (2009-04-10). Vibration measurement of a miniature component by high-speed image-plane digital holographic microscopy. Applied Optics 48 (11) : 1990-1997. ScholarBank@NUS Repository. https://doi.org/10.1364/AO.48.001990
Abstract: Measuring deformation of vibrating specimens whose dimensions are in the submillimeter range introduces a number of difficulties using laser interferometry. Normal interferometry is not suitable because of a phase ambiguity problem. In addition, the noise effect is much more serious in the measurement of small objects because a high-magnification lens is used. We present a method for full-field measurement of displacement, velocity, and acceleration of a vibrating miniature object based on image-plane digital holographic microscopy. A miniature cantilever beam is excited by a piezoelectric transducer stage with a sinusoidal configuration. A sequence of digital holograms is captured using a high-speed digital holographic microscope. Windowed Fourier analysis is applied in the spatial and spatiotemporal domains to extract the displacement, velocity and acceleration. The result shows that a combination of image- plane digital holographic microscopy and windowed Fourier analyses can be used to study vibration without encountering a phase ambiguity problem, and one can obtain instantaneous kinematic parameters on each point. ©2009 Optical Society of America.
Source Title: Applied Optics
URI: http://scholarbank.nus.edu.sg/handle/10635/61672
ISSN: 00036935
DOI: 10.1364/AO.48.001990
Appears in Collections:Staff Publications

Show full item record
Files in This Item:
There are no files associated with this item.

SCOPUSTM   
Citations

22
checked on Dec 14, 2017

WEB OF SCIENCETM
Citations

22
checked on Nov 17, 2017

Page view(s)

35
checked on Dec 10, 2017

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.