Please use this identifier to cite or link to this item: https://doi.org/10.1364/AO.48.001990
Title: Vibration measurement of a miniature component by high-speed image-plane digital holographic microscopy
Authors: Yu, F. 
Hongjian, S. 
Hong, M.
Issue Date: 10-Apr-2009
Citation: Yu, F., Hongjian, S., Hong, M. (2009-04-10). Vibration measurement of a miniature component by high-speed image-plane digital holographic microscopy. Applied Optics 48 (11) : 1990-1997. ScholarBank@NUS Repository. https://doi.org/10.1364/AO.48.001990
Abstract: Measuring deformation of vibrating specimens whose dimensions are in the submillimeter range introduces a number of difficulties using laser interferometry. Normal interferometry is not suitable because of a phase ambiguity problem. In addition, the noise effect is much more serious in the measurement of small objects because a high-magnification lens is used. We present a method for full-field measurement of displacement, velocity, and acceleration of a vibrating miniature object based on image-plane digital holographic microscopy. A miniature cantilever beam is excited by a piezoelectric transducer stage with a sinusoidal configuration. A sequence of digital holograms is captured using a high-speed digital holographic microscope. Windowed Fourier analysis is applied in the spatial and spatiotemporal domains to extract the displacement, velocity and acceleration. The result shows that a combination of image- plane digital holographic microscopy and windowed Fourier analyses can be used to study vibration without encountering a phase ambiguity problem, and one can obtain instantaneous kinematic parameters on each point. ©2009 Optical Society of America.
Source Title: Applied Optics
URI: http://scholarbank.nus.edu.sg/handle/10635/61672
ISSN: 00036935
DOI: 10.1364/AO.48.001990
Appears in Collections:Staff Publications

Show full item record
Files in This Item:
There are no files associated with this item.

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.