Please use this identifier to cite or link to this item: https://doi.org/10.1016/j.imavis.2012.07.006
Title: Recognition of occluded objects by reducing feature interactions
Authors: Lim, K.B. 
Wu, J.Y.
Keywords: Appearance
Geometry
Occlusion recognition
Spectral matching
Issue Date: Nov-2012
Source: Lim, K.B., Wu, J.Y. (2012-11). Recognition of occluded objects by reducing feature interactions. Image and Vision Computing 30 (11) : 906-914. ScholarBank@NUS Repository. https://doi.org/10.1016/j.imavis.2012.07.006
Abstract: The main difficulty for the recognition of occluded objects lies in the fact that the original feature set is corrupted and no longer reliable to represent the object of interest. This corruption is caused by the interactions between features from different objects, denoted as feature interactions, which is a key issue addressed in our algorithm. In this paper, a local to global strategy is represented for the occlusion recognition problem, which combines the pairwise grouping and graph matching algorithms. Local appearance similarity serves as priors to reduce feature interactions, by which the performance of graph matching algorithms is improved in order to deal with the contaminated data set. With our formulation, a global decision on object recognition can be made based on locally gathered information. Experimental results show that the proposed framework can dramatically reduce incorrect matches and objects under severe occlusions can still be recognized. © 2012 Elsevier B.V.
Source Title: Image and Vision Computing
URI: http://scholarbank.nus.edu.sg/handle/10635/61209
ISSN: 02628856
DOI: 10.1016/j.imavis.2012.07.006
Appears in Collections:Staff Publications

Show full item record
Files in This Item:
There are no files associated with this item.

Page view(s)

32
checked on Dec 11, 2017

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.