Please use this identifier to cite or link to this item:
Title: Pressure distributions along vertical hydrodynamic herringbone-grooved journal bearings
Authors: Rondonuwu, C.C.
Winoto, S.H. 
Keywords: Bearings
Herringbone grooves
Issue Date: Apr-2006
Citation: Rondonuwu, C.C., Winoto, S.H. (2006-04). Pressure distributions along vertical hydrodynamic herringbone-grooved journal bearings. Tribology Transactions 49 (2) : 174-181. ScholarBank@NUS Repository.
Abstract: The pressure distributions generated along vertical hydrodynamic herringbone-grooved journal bearings were experimentally and numerically investigated at rotational speeds ranging from 203 to 2110 rpm. A test rig was designed and constructed for this purpose and four journals (shafts) with different herringbone-grooved patterns and radial gaps were tested: Journal 1 (with symmetrical and discontinuous grooves and 0.25-mm clearance gap), Journal 2 (with symmetrical and discontinuous grooves and 0.35-mm clearance gap), Journal 3 (with symmetrical and four continuous grooves), and Journal 4 (with asymmetrical and three continuous grooves). The journals were made of aluminum with diameters of 46.00 mm, and the sleeve was made of a transparent Plexiglas pipe for visual observation of the lubricant in the gap between the journal and the sleeve. Pressure taps were installed along the sleeve to obtain the pressure distributions using a pressure transducer. Numerical simulations were performed for these four herringbone-grooved journal bearings using commercially available computational fluid dynamic software. The computational simulations agree in trends with the experimental results and theoretical expectations. Copyright © Society of Tribologists and Lubrication Engineers.
Source Title: Tribology Transactions
ISSN: 05698197
DOI: 10.1080/05698190500544593
Appears in Collections:Staff Publications

Show full item record
Files in This Item:
There are no files associated with this item.


checked on Jan 14, 2019


checked on Jan 7, 2019

Page view(s)

checked on Oct 13, 2018

Google ScholarTM



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.