Please use this identifier to cite or link to this item: https://doi.org/10.1016/j.biomaterials.2009.05.057
Title: Mesenchymal stem cell differentiation to neuronal cells on electrospun nanofibrous substrates for nerve tissue engineering
Authors: Prabhakaran, M.P. 
Venugopal, J.R. 
Ramakrishna, S. 
Keywords: Differentiation
Electrospun nanofibers
Inducing factors
Mesenchymal stem cells
Nerve tissue engineering
Neuronal cells
Issue Date: Oct-2009
Citation: Prabhakaran, M.P., Venugopal, J.R., Ramakrishna, S. (2009-10). Mesenchymal stem cell differentiation to neuronal cells on electrospun nanofibrous substrates for nerve tissue engineering. Biomaterials 30 (28) : 4996-5003. ScholarBank@NUS Repository. https://doi.org/10.1016/j.biomaterials.2009.05.057
Abstract: Bone marrow Mesenchymal stem cells capable of differentiating into neuronal cells on engineered nanofibrous scaffolds have great potential for bionanomaterial-cell transplantation therapy of neurodegenerative diseases and injuries of the nervous system. MSCs have been the highlight of many tissue engineering studies mainly because of their multipotential properties. We investigated the potential of human bone marrow derived Mesenchymal stem cells (MSCs) for neuronal differentiation in vitro on poly(l-lactic acid)-co-poly-(3-caprolactone)/Collagen (PLCL/Coll) nanofibrous scaffolds. PLCL and PLCL/Coll nanofibrous scaffolds were fabricated by electrospinning process and their chemical and mechanical characterizations were carried out using SEM, contact angle, FTIR, and tensile instrument. The differentiation of MSCs was carried out using neuronal inducing factors including β-mercaptoethanol, epidermal growth factor, nerve growth factor and brain derived growth factor in DMEM/F12 media. The proliferations of MSCs evaluated by MTS assay showed that the cells grown on PLCL/Coll nanofibrous scaffolds were comparatively higher (80%) than those on PLCL. Scanning electron microscopy results showed that MSCs differentiated on PLCL/Coll nanofibrous scaffolds showed neuronal morphology, with multipolar elongations and expressed neurofilament and nestin protein by immuno-fluorescent microscopy. Our studies on the differentiation of MSCs to neuronal cells on nanofibrous scaffolds suggest their potential application towards nerve regeneration. © 2009 Elsevier Ltd. All rights reserved.
Source Title: Biomaterials
URI: http://scholarbank.nus.edu.sg/handle/10635/60718
ISSN: 01429612
DOI: 10.1016/j.biomaterials.2009.05.057
Appears in Collections:Staff Publications

Show full item record
Files in This Item:
There are no files associated with this item.

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.