Please use this identifier to cite or link to this item: https://doi.org/10.1063/1.3690470
Title: Dielectrophoretic capture voltage spectrum for measurement of dielectric properties and separation of cancer cells
Authors: Wu, L.
Lanry Yung, L. 
Lim, K. 
Issue Date: 2-Mar-2012
Source: Wu, L., Lanry Yung, L., Lim, K. (2012-03-02). Dielectrophoretic capture voltage spectrum for measurement of dielectric properties and separation of cancer cells. Biomicrofluidics 6 (1) : -. ScholarBank@NUS Repository. https://doi.org/10.1063/1.3690470
Abstract: In this paper, a new dielectrophoresis (DEP) method based on capture voltage spectrum is proposed for measuring dielectric properties of biological cells. The capture voltage spectrum can be obtained from the balance of dielectrophoretic force and Stokes drag force acting on the cell in a microfluidic device with fluid flow and strip electrodes. The method was demonstrated with the measurement of dielectric properties of human colon cancer cells (HT-29 cells). From the capture voltage spectrum, the real part of Clausius-Mossotti factor of HT-29 cells for different frequencies of applied electric field was obtained. The dielectric properties of cell interior and plasma membrane were then estimated by using single-shell dielectric model. The cell interior permittivity and conductivity were found to be insensitive to changes in the conductivity of the medium in which the cells are suspended, but the measured permittivity and conductivity of cell membrane were found to increase with the increase of medium conductivity. In addition, the measurement of capture voltage spectrum was found to be useful in providing the optimum operating conditions for separating HT-29 cells from other cells (such as red blood cells) using dielectrophoresis. © 2012 American Institute of Physics.
Source Title: Biomicrofluidics
URI: http://scholarbank.nus.edu.sg/handle/10635/59951
ISSN: 19321058
DOI: 10.1063/1.3690470
Appears in Collections:Staff Publications

Show full item record
Files in This Item:
There are no files associated with this item.

SCOPUSTM   
Citations

28
checked on Dec 5, 2017

WEB OF SCIENCETM
Citations

30
checked on Nov 14, 2017

Page view(s)

40
checked on Dec 9, 2017

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.