Please use this identifier to cite or link to this item: https://doi.org/10.1023/A:1012431217818
Title: Convergence of a generalized SMO algorithm for SVM classifier design
Authors: Keerthi, S.S. 
Gilbert, E.G.
Keywords: Convergence
SMO algorithm
Support vector machine
Issue Date: Jan-2002
Source: Keerthi, S.S., Gilbert, E.G. (2002-01). Convergence of a generalized SMO algorithm for SVM classifier design. Machine Learning 46 (1-3) : 351-360. ScholarBank@NUS Repository. https://doi.org/10.1023/A:1012431217818
Abstract: Convergence of a generalized version of the modified SMO algorithms given by Keerthi et al. for SVM classifier design is proved. The convergence results are also extended to modified SMO algorithms for solving ν-SVM classifier problems.
Source Title: Machine Learning
URI: http://scholarbank.nus.edu.sg/handle/10635/59801
ISSN: 08856125
DOI: 10.1023/A:1012431217818
Appears in Collections:Staff Publications

Show full item record
Files in This Item:
There are no files associated with this item.

SCOPUSTM   
Citations

160
checked on Dec 6, 2017

WEB OF SCIENCETM
Citations

137
checked on Nov 21, 2017

Page view(s)

32
checked on Dec 17, 2017

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.