Please use this identifier to cite or link to this item: https://doi.org/10.1023/A:1012431217818
Title: Convergence of a generalized SMO algorithm for SVM classifier design
Authors: Keerthi, S.S. 
Gilbert, E.G.
Keywords: Convergence
SMO algorithm
Support vector machine
Issue Date: Jan-2002
Citation: Keerthi, S.S., Gilbert, E.G. (2002-01). Convergence of a generalized SMO algorithm for SVM classifier design. Machine Learning 46 (1-3) : 351-360. ScholarBank@NUS Repository. https://doi.org/10.1023/A:1012431217818
Abstract: Convergence of a generalized version of the modified SMO algorithms given by Keerthi et al. for SVM classifier design is proved. The convergence results are also extended to modified SMO algorithms for solving ν-SVM classifier problems.
Source Title: Machine Learning
URI: http://scholarbank.nus.edu.sg/handle/10635/59801
ISSN: 08856125
DOI: 10.1023/A:1012431217818
Appears in Collections:Staff Publications

Show full item record
Files in This Item:
There are no files associated with this item.

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.