Please use this identifier to cite or link to this item:
https://scholarbank.nus.edu.sg/handle/10635/58684
Title: | Sequential linearization approach for solving mixed-discrete nonlinear design optimization problems | Authors: | Loh, Han Tong Papalambros, P.Y. |
Issue Date: | Sep-1991 | Citation: | Loh, Han Tong,Papalambros, P.Y. (1991-09). Sequential linearization approach for solving mixed-discrete nonlinear design optimization problems. Journal of mechanisms, transmissions, and automation in design 113 (3) : 325-334. ScholarBank@NUS Repository. | Abstract: | Design optimization models often contain variables that must take only discrete values, such as standard sizes. Nonlinear optimization problems with a mixture of discrete and continuous variables are very difficult, and existing algorithms are either computationally intensive or applicable to models with special structure. A new approach for solving nonlinear mixed-discrete problems with no particular structure is presented here, motivated by its efficiency for models with extensive monotonicities of the problem's objective and constraint functions with respect to the design variables. It involves solving a sequence of mixed-discrete linear approximations of the original nonlinear model. In this article, a review of previous approaches is followed by description of the resulting algorithm, its convergence properties and limitations. Several illustrative examples are given. A sequel article presents a detailed algorithmic implementation and extensive computational results. | Source Title: | Journal of mechanisms, transmissions, and automation in design | URI: | http://scholarbank.nus.edu.sg/handle/10635/58684 | ISSN: | 07380666 |
Appears in Collections: | Staff Publications |
Show full item record
Files in This Item:
There are no files associated with this item.
Google ScholarTM
Check
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.