Please use this identifier to cite or link to this item: http://scholarbank.nus.edu.sg/handle/10635/58512
Title: Multi-category classification of tool conditions using wavelet packets and ART2 network
Authors: Niu, Y.M.
Wong, Y.S. 
Hong, G.S. 
Liu, T.I.
Issue Date: Nov-1998
Source: Niu, Y.M.,Wong, Y.S.,Hong, G.S.,Liu, T.I. (1998-11). Multi-category classification of tool conditions using wavelet packets and ART2 network. Journal of Manufacturing Science and Engineering, Transactions of the ASME 120 (4) : 807-815. ScholarBank@NUS Repository.
Abstract: This paper proposes a new approach for multi-category identification of turning tool conditions. It uses the time-frequency feature information of the AE signal obtained from best-basis wavelet packet analysis. By applying the philosophy of divide-and-conquer and a local wavelet packet extraction technique, acoustic emission (AE) signals from turning process have been separated into transient and continuous components. The transient and continuous AE components are used respectively for transient tool conditions and tool wear identification. For transient tool condition identification, a 16-element feature vector derived from the frequency band value of wavelet packet coefficients in the time-frequency phase plane is used to identify tool fracture, chipping and chip breakage through an ART2 network. To identify tool wear status, spectral and statistical analysis techniques have been employed to extract three primary features: the frequency band power at 300 kHz-600 kHz, the skew and kurtosis. The mean and standard deviation within a moving window of the primary features are then computed to give three secondary features. The six features form the inputs to an ART2 neural network to identify fresh and worn state of the tool. Cutting experimental results have shown that this approach is highly successful in identifying both the transient and progressive tool wear states over a wide range of turning conditions.
Source Title: Journal of Manufacturing Science and Engineering, Transactions of the ASME
URI: http://scholarbank.nus.edu.sg/handle/10635/58512
ISSN: 10871357
Appears in Collections:Staff Publications

Show full item record
Files in This Item:
There are no files associated with this item.

Page view(s)

31
checked on Dec 15, 2017

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.