Please use this identifier to cite or link to this item: https://doi.org/10.1006/jsvi.1999.2815
Title: Generalized differential quadrature rule for initial-value differential equations
Authors: Wu, T.Y. 
Liu, G.R. 
Issue Date: 1-Jun-2000
Citation: Wu, T.Y., Liu, G.R. (2000-06-01). Generalized differential quadrature rule for initial-value differential equations. Journal of Sound and Vibration 233 (2) : 195-213. ScholarBank@NUS Repository. https://doi.org/10.1006/jsvi.1999.2815
Abstract: The generalized differential quadrature rule (GDQR) proposed recently by the authors is applied here to solve initial-value differential equations of the 2nd to 4th order. Differential quadrature expressions are derived based on the GDQR for these equations. The Hermite interpolation functions are used as trial functions to obtain the explicit weighting coefficients for an easy and efficient implementation of the GDQR. The numerical solutions for example problems demonstrate that the GDQR has high efficiency and accuracy. A detailed discussion on the present method is presented by comparing with other existing methods. The present method can be extended to other types of differential equation systems.
Source Title: Journal of Sound and Vibration
URI: http://scholarbank.nus.edu.sg/handle/10635/58331
ISSN: 0022460X
DOI: 10.1006/jsvi.1999.2815
Appears in Collections:Staff Publications

Show full item record
Files in This Item:
There are no files associated with this item.

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.