Please use this identifier to cite or link to this item: https://doi.org/10.1049/iet-rsn.2008.0188
Title: Experimental research of unsupervised Cameron/maximum-likelihood classification method for fully polarimetric synthetic aperture radar data
Authors: Xing, M.
Guo, R.
Qiu, C.W. 
Liu, L.
Bao, Z.
Issue Date: 2010
Source: Xing, M.,Guo, R.,Qiu, C.W.,Liu, L.,Bao, Z. (2010). Experimental research of unsupervised Cameron/maximum-likelihood classification method for fully polarimetric synthetic aperture radar data. IET Radar, Sonar and Navigation 4 (1) : 85-95. ScholarBank@NUS Repository. https://doi.org/10.1049/iet-rsn.2008.0188
Abstract: In this study, experimental research on classification is applied to fully polarimetric data in X-band from China. Considering the amplitude and phase error between H and V channels in the system, the authors firstly correct the error in original data. The authors also deduce the formula of Cameron's classification method for the real data in our study. Then Cameron's method is used to initially classify the site image. Finally, the initial classification map defines training sets for the maximum-likelihood (ML) classifier. The advantages of this method are the automated classification and interpretation of each class based on the scattering mechanism. The experiment demonstrates the feasibility of the proposed approach, which dramatically improves the X-band data classification result compared with the Cameron method and H/α/ML method. © The Institution of Engineering and Technology 2010.
Source Title: IET Radar, Sonar and Navigation
URI: http://scholarbank.nus.edu.sg/handle/10635/55962
ISSN: 17518784
DOI: 10.1049/iet-rsn.2008.0188
Appears in Collections:Staff Publications

Show full item record
Files in This Item:
There are no files associated with this item.

SCOPUSTM   
Citations

8
checked on Dec 4, 2017

Page view(s)

33
checked on Dec 8, 2017

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.