Please use this identifier to cite or link to this item: https://doi.org/10.1016/j.coastaleng.2003.11.005
Title: A numerical study of solitary wave interaction with rectangular obstacles
Authors: Lin, P. 
Keywords: Dissipation
Energy flux
Rectangular obstacle
Reflection
Solitary wave
Step
Transmission
Issue Date: Mar-2004
Source: Lin, P. (2004-03). A numerical study of solitary wave interaction with rectangular obstacles. Coastal Engineering 51 (1) : 35-51. ScholarBank@NUS Repository. https://doi.org/10.1016/j.coastaleng.2003.11.005
Abstract: A well-validated numerical model is employed to study solitary wave interaction with rectangular obstacles. The characteristics of wave transformation in terms of wave reflection, transmission, and dissipation (RTD) coefficients are investigated for various combination of obstacle length a and height b . Considering that a solitary wave will go through the fission process over a long obstacle or step, during which the wave profile continuously evolves that makes it difficult to define the transmission coefficient based on wave heights, we propose the integration of energy flux for the calculation of wave coefficients. A general integral energy equation is derived that serves as the basis of calculating RTD coefficients. This method is applied in this study for the obstacles with 0< b/h <1+2 H/h and 0< a/h <∞ (where H is the wave height and h is the deep water depth), which cover the full range of structural type from a submerged obstacle to an emerged obstacle and from a thin plate to a step. For waves on steps, the present numerical results agree excellently with Lamb's [Lamb, H., 1932. Hydrodynamics, 6th Ed. Dover, New York] theory based on the long wave approximations and Seabra-Santos et al.'s [J. Fluid Mech. 176 (1987) 117] experimental data for both weakly nonlinear and fully nonlinear waves. The "edge-layer" theory developed by Sugimoto et al. [J. Phys. Soc. Jpn. 56 (1987) 1717], however, underestimates wave reflection significantly. For waves over obstacles, only the weakly nonlinear waves H/h =0.1 are considered. The RTD coefficients for different a/h and b/h are calculated and tabulated for the purpose of engineering application. The major differences between waves on a step and on a long obstacle are highlighted. The role of energy dissipation is explored and it is found that it can consume up to 60% of the total energy. The energy dissipation is mainly caused by vortex shedding and wave breaking that reduces wave transmission but has little impact on wave reflection. © 2004 Elsevier B.V. All rights reserved.
Source Title: Coastal Engineering
URI: http://scholarbank.nus.edu.sg/handle/10635/54675
ISSN: 03783839
DOI: 10.1016/j.coastaleng.2003.11.005
Appears in Collections:Staff Publications

Show full item record
Files in This Item:
There are no files associated with this item.

SCOPUSTM   
Citations

61
checked on Dec 6, 2017

WEB OF SCIENCETM
Citations

55
checked on Nov 22, 2017

Page view(s)

27
checked on Dec 17, 2017

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.