Please use this identifier to cite or link to this item:
https://doi.org/10.1063/1.4704293
Title: | Simulation of cavitating flows with isentropic one-fluid model | Authors: | Khoo, B.C. Zheng, J.G. Hu, Z.M. |
Keywords: | cavitating flows homogeneous single-phase model isentropic formulation underwater objects |
Issue Date: | 2012 | Citation: | Khoo, B.C., Zheng, J.G., Hu, Z.M. (2012). Simulation of cavitating flows with isentropic one-fluid model. AIP Conference Proceedings 1440 : 828-833. ScholarBank@NUS Repository. https://doi.org/10.1063/1.4704293 | Abstract: | In this study, numerical simulation of cavitating flows around high-speed underwater objects is performed using an in-house developed code in the framework of a homogeneous single-phase flow model. The mathematically consistent isentropic one-fluid formulation is employed to model the cavitation inception and evolution. The convective terms of the governing equations are numerically integrated using a Godunov-type, cell-centered finite volume method on triangular mesh, while the time-marching is handled with the second-order accurate Runge-Kutta scheme. The geometric source terms are dealt with the two-stage Runge-Kutta method separately. To validate the developed code, a highsubsonic flow past a conical-shaped projectile with a disk cavitator mounted at its head is resolved. It is found that the calculated cavitation shape enveloping the entire projectile qualitatively agrees well with experimental image, which indicates validity of our method. Next, the cavitating flow induced by a NACA 0009 hydrofoil is studied and the relationship between cavitation evolution and angle of attack of hydrofoil is examined. Finally, the interaction of a cavitation with a shock is investigated. © 2012 American Institute of Physics. | Source Title: | AIP Conference Proceedings | URI: | http://scholarbank.nus.edu.sg/handle/10635/51649 | ISBN: | 9780735410329 | ISSN: | 0094243X | DOI: | 10.1063/1.4704293 |
Appears in Collections: | Staff Publications |
Show full item record
Files in This Item:
There are no files associated with this item.
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.