Please use this identifier to cite or link to this item: https://doi.org/10.1017/S002211200700852X
Title: Interaction of lithotripter shockwaves with single inertial cavitation bubbles
Authors: Klaseboer, E.
Fong, S.W.
Turangan, C.K.
Khoo, B.C. 
Szeri, A.J.
Calvisi, M.L.
Sankin, G.N.
Zhong, P.
Issue Date: 25-Dec-2007
Citation: Klaseboer, E., Fong, S.W., Turangan, C.K., Khoo, B.C., Szeri, A.J., Calvisi, M.L., Sankin, G.N., Zhong, P. (2007-12-25). Interaction of lithotripter shockwaves with single inertial cavitation bubbles. Journal of Fluid Mechanics 593 : 33-56. ScholarBank@NUS Repository. https://doi.org/10.1017/S002211200700852X
Abstract: The dynamic interaction of a shockwave (modelled as a pressure pulse) with an initially spherically oscillating bubble is investigated. Upon the shockwave impact, the bubble deforms non-spherically and the flow field surrounding the bubble is determined with potential flow theory using the boundary-element method (BEM). The primary advantage of this method is its computational efficiency. The simulation process is repeated until the two opposite sides of the bubble surface collide with each other (i.e. the formation of a jet along the shockwave propagation direction). The collapse time of the bubble, its shape and the velocity of the jet are calculated. Moreover, the impact pressure is estimated based on water-hammer pressure theory. The Kelvin impulse, kinetic energy and bubble displacement (all at the moment of jet impact) are also determined. Overall, the simulated results compare favourably with experimental observations of lithotripter shockwave interaction with single bubbles (using laser-induced bubbles at various oscillation stages). The simulations confirm the experimental observation that the most intense collapse, with the highest jet velocity and impact pressure, occurs for bubbles with intermediate size during the contraction phase when the collapse time of the bubble is approximately equal to the compressive pulse duration of the shock wave. Under this condition, the maximum amount of energy of the incident shockwave is transferred to the collapsing bubble. Further, the effect of the bubble contents (ideal gas with different initial pressures) and the initial conditions of the bubble (initially oscillating vs. non-oscillating) on the dynamics of the shockwave-bubble interaction are discussed. © 2007 Cambridge University Press.
Source Title: Journal of Fluid Mechanics
URI: http://scholarbank.nus.edu.sg/handle/10635/51440
ISSN: 00221120
DOI: 10.1017/S002211200700852X
Appears in Collections:Staff Publications

Show full item record
Files in This Item:
There are no files associated with this item.

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.