Please use this identifier to cite or link to this item: https://doi.org/10.1016/j.geomorph.2011.01.010
Title: Major element chemistry in the upper Yangtze River: A case study of the Longchuanjiang River
Authors: Li, S. 
Lu, X.X. 
He, M.
Zhou, Y.
Bei, R.
Li, L.
Ziegler, A.D. 
Keywords: Anions
Anthropogenic activity
Cations
Chemical weathering
CO2 consumption
Yangtze (Changjiang) River basin
Issue Date: 1-Jun-2011
Source: Li, S., Lu, X.X., He, M., Zhou, Y., Bei, R., Li, L., Ziegler, A.D. (2011-06-01). Major element chemistry in the upper Yangtze River: A case study of the Longchuanjiang River. Geomorphology 129 (1-2) : 29-42. ScholarBank@NUS Repository. https://doi.org/10.1016/j.geomorph.2011.01.010
Abstract: Water samples were collected twice per month over a two-year period from the Longchuanjiang River (Yunnan Province, China) to understand monthly variations in major elements and solute fluxes as related to rock weathering and associated CO2 consumption rates. Solute concentrations were 5 times the median of 65mg/l for global average. Total cationic exchange capacity (Tz+) ranged from 2.4 to 6.1meq/l; and the mean (4.4meq/l) was significantly higher than that of the global river waters. Calcium and bicarbonate dominated the annual ionic composition, accounting for more than 70% of the solute flux that exceeded 71×106kg/yr. Lower concentrations of most measured elements during the monsoon high flow period could be explained by dilution effects from precipitation. Three major reservoirs contributed to the dissolved load: carbonates, silicates and anthropogenic inputs, i.e., some 83% of the riverine cations from carbonates and 17% from silicates. The chemical weathering rate of 26.1t/km2/yr, with respective carbonate and silicate weathering rates of 20.3t/km2/yr (8.46mm/kyr) and 5.75t/km2/yr (2.13mm/kyr), was comparable to the average for global rivers, but higher than that for the Changjiang River in China. The CO2 consumption rate was estimated to be 173.7×103mol/km2/yr and 202.9×103mol/km2/yr by silicate and carbonate weathering, respectively. The CO2 consumed by rock chemical weathering in the upper Changjiang River reduced the atmospheric CO2 level and constituted a significant part of the global carbon budget. Consequently the carbon sink potential of rock chemical weathering in the Qinghai-Plateau deserves extra attention. Population density and anthropogenic activities, particularly agricultural practices, contributed remarkably to dissolved solutes and associated CO2 consumption worldwide, and anthropogenic inputs probably contributed some 10.4% to the dissolved solutes in the Longchuanjiang River. © 2011 Elsevier B.V.
Source Title: Geomorphology
URI: http://scholarbank.nus.edu.sg/handle/10635/49750
ISSN: 0169555X
DOI: 10.1016/j.geomorph.2011.01.010
Appears in Collections:Staff Publications

Show full item record
Files in This Item:
There are no files associated with this item.

SCOPUSTM   
Citations

25
checked on Dec 5, 2017

WEB OF SCIENCETM
Citations

19
checked on Nov 16, 2017

Page view(s)

77
checked on Dec 10, 2017

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.