Please use this identifier to cite or link to this item: https://doi.org/10.1016/j.jenvman.2011.11.017
Title: Accumulation of potentially toxic elements in road deposited sediments in residential and light industrial neighborhoods of Singapore
Authors: Yuen, J.Q.
Olin, P.H.
Lim, H.S.
Benner, S.G.
Sutherland, R.A.
Ziegler, A.D. 
Keywords: Asia
Contaminants
Elemental enrichment ratios
Land use
Pollutant load index
Road dust
Street sweeping
Urban pollution
Issue Date: 30-Jun-2012
Source: Yuen, J.Q., Olin, P.H., Lim, H.S., Benner, S.G., Sutherland, R.A., Ziegler, A.D. (2012-06-30). Accumulation of potentially toxic elements in road deposited sediments in residential and light industrial neighborhoods of Singapore. Journal of Environmental Management 101 : 151-163. ScholarBank@NUS Repository. https://doi.org/10.1016/j.jenvman.2011.11.017
Abstract: Road deposited sediments (RDS) are a valuable environmental medium for characterizing contaminant levels in urban areas; and their associated potentially toxic elements (PTEs) can directly impact both human and aquatic health. In this study, RDS were collected from 15 co-located industrial and residential roads throughout Singapore to determine the effect of land use on contaminant levels. A second pilot study was designed to quantify the efficiency of road sweeping in removing different RDS grain size fractions from industrial and residential roads. The fine fraction (<63 μm) of all RDSs was analyzed for over 40 elements. Eleven elements that reflect geogenic and anthropogenic sources were examined in detail (Al, Co, Cr, Cu, Fe, Ni, Pb, Sb, Sc, Si, and Zn). Industrial RDS had statistically higher concentrations of Co, Cr, Fe, and Ni than residential RDS. Potentially toxic elements Cu, Pb, Sb, and Zn were enriched >10-fold at all locations compared to upper continental crust values. Concentrations of Cu, Pb and Zn exceeded aquatic sediment probable effect concentration levels, suggesting they could generate a toxic response in bottom-dwelling aquatic organisms. Traffic was equally heavy at both industrial and residential sites, but large trucks and machinery comprised a larger proportion of the traffic in the industrial areas. Traffic was not significantly correlated with the PTE (i.e., Cu, Pb, Sb and Zn) concentrations. Plausible anthropogenic contaminant sources include vehicles (e.g., brake and tire wear, vehicle emissions) and several industrial activities including metal works, oil processing, and waste incineration. Street sweeping was effective in removal of large organic debris and inorganic RDS, but it was ineffective in removing the geochemically important fraction, i.e., <125 μm. © 2012 Elsevier Ltd.
Source Title: Journal of Environmental Management
URI: http://scholarbank.nus.edu.sg/handle/10635/49696
ISSN: 03014797
DOI: 10.1016/j.jenvman.2011.11.017
Appears in Collections:Staff Publications

Show full item record
Files in This Item:
There are no files associated with this item.

SCOPUSTM   
Citations

51
checked on Dec 6, 2017

WEB OF SCIENCETM
Citations

45
checked on Nov 19, 2017

Page view(s)

127
checked on Dec 10, 2017

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.