Please use this identifier to cite or link to this item: http://scholarbank.nus.edu.sg/handle/10635/42528
Title: Using neural network rule extraction and decision tables for credit-risk evaluation
Authors: Baesens, B.
Setiono, R. 
Mues, C.
Vanthienen, J.
Keywords: Classification
Credit-Risk Evaluation
Decision Tables
Neural Networks
Issue Date: 2003
Source: Baesens, B.,Setiono, R.,Mues, C.,Vanthienen, J. (2003). Using neural network rule extraction and decision tables for credit-risk evaluation. Management Science 49 (3) : 312-329. ScholarBank@NUS Repository.
Abstract: Credit-risk evaluation is a very challenging and important management science problem in the domain of financial analysis. Many classification methods have been suggested in the literature to tackle this problem. Neural networks, especially, have received a lot of attention because of their universal approximation property. However, a major drawback associated with the use of neural networks for decision making is their lack of explanation capability. While they can achieve a high predictive accuracy rate, the reasoning behind how they reach their decisions is not readily available. In this paper, we present the results from analysing three real-life credit-risk data sets using neural network rule extraction techniques. Clarifying the neural network decisions by explanatory rules that capture the learned knowledge embedded in the networks can help the credit-risk manager in explaining why a particular applicant is classified as either bad or good. Furthermore, we also discuss how these rules can be visualized as a decision table in a compact and intuitive graphical format that facilitates easy consultation. It is concluded that neural network rule extraction and decision tables are powerful management tools that allow us to build advanced and userfriendly decision-support systems for credit-risk evaluation.
Source Title: Management Science
URI: http://scholarbank.nus.edu.sg/handle/10635/42528
ISSN: 00251909
Appears in Collections:Staff Publications

Show full item record
Files in This Item:
There are no files associated with this item.

Page view(s)

75
checked on Dec 8, 2017

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.