Please use this identifier to cite or link to this item: https://doi.org/10.1142/S0219720008003485
Title: PPiClust: Effect clustering of 3D protein-protein interaction interfaces
Authors: Aung, Z.
Tan, S.-H.
Ng, S.-K.
Tan, K.-L. 
Keywords: 3D interaction interfaces
Efficient clustering
Protein - Protein interaction
Issue Date: 2008
Source: Aung, Z.,Tan, S.-H.,Ng, S.-K.,Tan, K.-L. (2008). PPiClust: Effect clustering of 3D protein-protein interaction interfaces. Journal of Bioinformatics and Computational Biology 6 (3) : 415-433. ScholarBank@NUS Repository. https://doi.org/10.1142/S0219720008003485
Abstract: The biological mechanisms through which proteins interact with one another are best revealed by studying the structural interfaces between interacting proteins. Protein - protein interfaces can be extracted from three-dimensional (3D) structural data of protein complexes and then clustered to derive biological insights. However, conventional protein interface clustering methods lack computational scalability and statistical support. In this work, we present a new method named "PP i Clust" to systematically encode, cluster, and analyze similar 3D interface patterns in protein complexes efficiently. Experimental results showed that our method is effective in discovering visually consistent and statistically significant clusters of interfaces, and at the same time sufficiently time-efficient to be performed on a single computer. The interface clusters are also useful for uncovering the structural basis of protein interactions. Analysis of the resulting interface clusters revealed groups of structurally diverse proteins having similar interface patterns. We also found, in some of the interface clusters, the presence of well-known linear binding motifs which were noncontiguous in the primary sequences. These results suggest that PP i Clust can discover not only statistically significant, but also biologically significant, protein interface clusters from protein complex structural data. © 2008 Imperial College Press.
Source Title: Journal of Bioinformatics and Computational Biology
URI: http://scholarbank.nus.edu.sg/handle/10635/41784
ISSN: 02197200
DOI: 10.1142/S0219720008003485
Appears in Collections:Staff Publications

Show full item record
Files in This Item:
There are no files associated with this item.

SCOPUSTM   
Citations

9
checked on Dec 11, 2017

Page view(s)

56
checked on Dec 9, 2017

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.