Please use this identifier to cite or link to this item:
https://scholarbank.nus.edu.sg/handle/10635/41304
Title: | A hybrid morpheme-word representation for machine translation of morphologically rich languages | Authors: | Luong, M.-T. Nakov, P. Kan, M.-Y. |
Issue Date: | 2010 | Citation: | Luong, M.-T.,Nakov, P.,Kan, M.-Y. (2010). A hybrid morpheme-word representation for machine translation of morphologically rich languages. EMNLP 2010 - Conference on Empirical Methods in Natural Language Processing, Proceedings of the Conference : 148-157. ScholarBank@NUS Repository. | Abstract: | We propose a language-independent approach for improving statistical machine translation for morphologically rich languages using a hybrid morpheme-word representation where the basic unit of translation is the morpheme, but word boundaries are respected at all stages of the translation process. Our model extends the classic phrase-based model by means of (1) word boundary-aware morpheme-level phrase extraction, (2) minimum error-rate training for a morpheme-level translation model using word-level BLEU, and (3) joint scoring with morpheme- and word-level language models. Further improvements are achieved by combining our model with the classic one. The evaluation on English to Finnish using Europarl (714K sentence pairs; 15.5M English words) shows statistically significant improvements over the classic model based on BLEU and human judgments. © 2010 Association for Computational Linguistics. | Source Title: | EMNLP 2010 - Conference on Empirical Methods in Natural Language Processing, Proceedings of the Conference | URI: | http://scholarbank.nus.edu.sg/handle/10635/41304 | ISBN: | 1932432868 |
Appears in Collections: | Staff Publications |
Show full item record
Files in This Item:
There are no files associated with this item.
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.