Please use this identifier to cite or link to this item: https://doi.org/10.1145/1066157.1066211
Title: CURLER: Finding and visualizing nonlinear correlation clusters
Authors: Tung, A.K.H. 
Xu, X. 
Ooi, B.C. 
Issue Date: 2005
Source: Tung, A.K.H.,Xu, X.,Ooi, B.C. (2005). CURLER: Finding and visualizing nonlinear correlation clusters. Proceedings of the ACM SIGMOD International Conference on Management of Data : 467-478. ScholarBank@NUS Repository. https://doi.org/10.1145/1066157.1066211
Abstract: While much work has been done in finding linear correlation among subsets of features in high-dimensional data, work on detecting nonlinear correlation has been left largely untouched. In this paper, we present an algorithm for finding and visualizing nonlinear correlation clusters in the subspace of high-dimensional databases. Unlike the detection of linear correlation in which clusters are of unique orientations, finding nonlinear correlation clusters of varying orientations requires merging clusters of possibly very different orientations: Combined with the fact that spatial proximity must be judged based on a subset of features that are not originally known, deciding which clusters to be merged during the clustering process becomes a challenge. To avoid this problem, we propose a novel concept called co-sharing level which captures both spatial proximity and cluster orientation when judging similarity between clusters. Based on this concept, we develop an algorithm which not only detects nonlinear correlation clusters but also provides a way to visualize them. Experiments on both synthetic and real-life datasets are done to show the effectiveness of our method. Copyright 2005 ACM.
Source Title: Proceedings of the ACM SIGMOD International Conference on Management of Data
URI: http://scholarbank.nus.edu.sg/handle/10635/41284
ISSN: 07308078
DOI: 10.1145/1066157.1066211
Appears in Collections:Staff Publications

Show full item record
Files in This Item:
There are no files associated with this item.

SCOPUSTM   
Citations

40
checked on Nov 29, 2017

Page view(s)

67
checked on Dec 9, 2017

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.