Please use this identifier to cite or link to this item: https://doi.org/10.1007/978-3-642-34179-3_8
Title: Probabilistically ranking web article quality based on evolution patterns
Authors: Han, J.
Chen, K.
Jiang, D. 
Issue Date: 2012
Citation: Han, J.,Chen, K.,Jiang, D. (2012). Probabilistically ranking web article quality based on evolution patterns. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) 7600 LNCS : 229-258. ScholarBank@NUS Repository. https://doi.org/10.1007/978-3-642-34179-3_8
Abstract: User-generated content (UGC) is created, updated, and maintained by various web users, and its data quality is a major concern to all users. We observe that each Wikipedia page usually goes through a series of revision stages, gradually approaching a relatively steady quality state and that articles of different quality classes exhibit specific evolution patterns. We propose to assess the quality of a number of web articles using Learning Evolution Patterns (LEP). First, each article's revision history is mapped into a state sequence using the Hidden Markov Model (HMM). Second, evolution patterns are mined for each quality class, and each quality class is characterized by a set of quality corpora. Finally, an article's quality is determined probabilistically by comparing the article with the quality corpora. Our experimental results demonstrate that the LEP approach can capture a web article's quality precisely. © 2012 Springer-Verlag.
Source Title: Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
URI: http://scholarbank.nus.edu.sg/handle/10635/41251
ISBN: 9783642341786
ISSN: 03029743
DOI: 10.1007/978-3-642-34179-3_8
Appears in Collections:Staff Publications

Show full item record
Files in This Item:
There are no files associated with this item.

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.