Please use this identifier to cite or link to this item: https://doi.org/10.1007/978-3-642-00958-7_76
Title: Improving opinion retrieval based on query-specific sentiment lexicon
Authors: Na, S.-H. 
Lee, Y.
Nam, S.-H.
Lee, J.-H.
Issue Date: 2009
Citation: Na, S.-H.,Lee, Y.,Nam, S.-H.,Lee, J.-H. (2009). Improving opinion retrieval based on query-specific sentiment lexicon. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) 5478 LNCS : 734-738. ScholarBank@NUS Repository. https://doi.org/10.1007/978-3-642-00958-7_76
Abstract: Lexicon-based approaches have been widely used for opinion retrieval due to their simplicity. However, no previous work has focused on the domain-dependency problem in opinion lexicon construction. This paper proposes simple feedback-style learning for query-specific opinion lexicon using the set of top-retrieved documents in response to a query. The proposed learning starts from the initial domain-independent general lexicon and creates a query-specific lexicon by re-updating the opinion probability of the initial lexicon based on top-retrieved documents. Experimental results on recent TREC test sets show that the query-specific lexicon provides a significant improvement over previous approaches, especially in BLOG-06 topics1. © Springer-Verlag Berlin Heidelberg 2009.
Source Title: Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
URI: http://scholarbank.nus.edu.sg/handle/10635/41079
ISBN: 3642009573
ISSN: 03029743
DOI: 10.1007/978-3-642-00958-7_76
Appears in Collections:Staff Publications

Show full item record
Files in This Item:
There are no files associated with this item.

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.