Please use this identifier to cite or link to this item: https://doi.org/10.1007/978-3-642-27355-1_64
Title: Video browser showdown by NUS
Authors: Yuan, J.
Luan, H. 
Hou, D.
Zhang, H.
Zheng, Y.-T.
Zha, Z.-J. 
Chua, T.-S. 
Issue Date: 2012
Citation: Yuan, J.,Luan, H.,Hou, D.,Zhang, H.,Zheng, Y.-T.,Zha, Z.-J.,Chua, T.-S. (2012). Video browser showdown by NUS. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) 7131 LNCS : 642-645. ScholarBank@NUS Repository. https://doi.org/10.1007/978-3-642-27355-1_64
Abstract: The known item search task (KIS) aims to retrieve a unique video or video clip in the video corpus. This paper presents a novel interactive video browsing system for KIS task. Our system integrates visual content-based, text-based and concept-based search approaches. It allows users to flexibly choose the search approaches. Moreover, two novel feedback schemes are employed: first, users can specify the temporal order in visual and conceptual inputs; second, users can label related samples with respect to visual, textual and conceptual features. Adopting these two feedback schemes greatly enhances search performance. © 2012 Springer-Verlag.
Source Title: Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
URI: http://scholarbank.nus.edu.sg/handle/10635/40873
ISBN: 9783642273544
ISSN: 03029743
DOI: 10.1007/978-3-642-27355-1_64
Appears in Collections:Staff Publications

Show full item record
Files in This Item:
There are no files associated with this item.

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.