Please use this identifier to cite or link to this item: https://doi.org/10.1101/gr.101907.109
Title: Dynamic changes in the human methylome during differentiation
Authors: Laurent, L.
Wong, E.
Li, G.
Huynh, T.
Tsirigos, A.
Ong, C.T.
Low, H.M.
Sung, K.W.K. 
Rigoutsos, I.
Loring, J.
Wei, C.-L.
Issue Date: 2010
Source: Laurent, L., Wong, E., Li, G., Huynh, T., Tsirigos, A., Ong, C.T., Low, H.M., Sung, K.W.K., Rigoutsos, I., Loring, J., Wei, C.-L. (2010). Dynamic changes in the human methylome during differentiation. Genome Research 20 (3) : 320-331. ScholarBank@NUS Repository. https://doi.org/10.1101/gr.101907.109
Abstract: DNA methylation is a critical epigenetic regulator in mammalian development. Here, we present a whole-genome comparative view of DNA methylation using bisulfite sequencing of three cultured cell types representing progressive stages of differentiation: human embryonic stem cells (hESCs), a fibroblastic differentiated derivative of the hESCs, and neonatal fibroblasts. As a reference, we compared our maps with a methylome map of a fully differentiated adult cell type, mature peripheral blood mononuclear cells (monocytes). We observed many notable common and cell-type-specific features among all cell types. Promoter hypomethylation (both CG and CA) and higher levels of gene body methylation were positively correlated with transcription in all cell types. Exons were more highly methylated than introns, and sharp transitions of methylation occurred at exon-intron boundaries, suggesting a role for differential methylation in transcript splicing. Developmental stage was reflected in both the level of global methylation and extent of non-CpG methylation, with hESC highest, fibroblasts intermediate, and monocytes lowest. Differentiation-associated differential methylation profiles were observed for developmentally regulated genes, including the HOX clusters, other homeobox transcription factors, and pluripotence-associated genes such as POU5F1, TCF3, and KLF4. Our results highlight the value of high-resolution methylation maps, in conjunction with other systems-level analyses, for investigation of previously undetectable developmental regulatory mechanisms. © 2010 by Cold Spring Harbor Laboratory Press.
Source Title: Genome Research
URI: http://scholarbank.nus.edu.sg/handle/10635/39643
ISSN: 10889051
DOI: 10.1101/gr.101907.109
Appears in Collections:Staff Publications

Show full item record
Files in This Item:
There are no files associated with this item.

SCOPUSTM   
Citations

560
checked on Dec 5, 2017

WEB OF SCIENCETM
Citations

505
checked on Dec 5, 2017

Page view(s)

60
checked on Dec 11, 2017

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.