Please use this identifier to cite or link to this item: http://scholarbank.nus.edu.sg/handle/10635/39412
Title: Protein structure and fold prediction using tree-augmented naive Bayesian classifier.
Authors: Chinnasamy, A.
Sung, W.K. 
Mittal, A. 
Issue Date: 2004
Source: Chinnasamy, A.,Sung, W.K.,Mittal, A. (2004). Protein structure and fold prediction using tree-augmented naive Bayesian classifier.. Pacific Symposium on Biocomputing. Pacific Symposium on Biocomputing : 387-398. ScholarBank@NUS Repository.
Abstract: For determining the structure class and fold class of Protein Structure, computer-based techniques have became essential considering the large volume of the data. Several techniques based on sequence similarity. Neural Networks, SVMs, etc have been applied. This paper presents a framework using the Tree-Augmented Networks (TAN) based on the theory of learning Bayesian networks but with less restrictive assumptions than the naive Bayesian networks. In order to enhance TAN's performance, pre-processing of data is done by feature discretization and post-processing is done by using Mean Probability Voting (MPV) scheme. The advantage of using Bayesian approach over other learning methods is that the network structure is intuitive. In addition, one can read off the TAN structure probabilities to determine the significance of each feature (say, Hydrophobicity) for each class, which help to further understand the mystery of protein structure. Experimental results and comparison with other works over two databases show the effectiveness of our TAN based framework. The idea is implemented as the BAYESPROT web server and it is available at http://www-appn.comp.nus.edu.sg/-bioinfo/bayesprot/Default.htm.
Source Title: Pacific Symposium on Biocomputing. Pacific Symposium on Biocomputing
URI: http://scholarbank.nus.edu.sg/handle/10635/39412
Appears in Collections:Staff Publications

Show full item record
Files in This Item:
There are no files associated with this item.

Page view(s)

67
checked on Dec 15, 2017

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.