Please use this identifier to cite or link to this item: https://doi.org/10.1016/j.imavis.2009.04.005
Title: Level-set segmentation of brain tumors using a threshold-based speed function
Authors: Taheri, S.
Ong, S.H. 
Chong, V.F.H. 
Keywords: 3D segmentation
Level-set
Threshold
Issue Date: 2010
Source: Taheri, S.,Ong, S.H.,Chong, V.F.H. (2010). Level-set segmentation of brain tumors using a threshold-based speed function. Image and Vision Computing 28 (1) : 26-37. ScholarBank@NUS Repository. https://doi.org/10.1016/j.imavis.2009.04.005
Abstract: The level set approach can be used as a powerful tool for 3D segmentation of a tumor to achieve an accurate estimation of its volume. A major challenge of such algorithms is to set the equation parameters, especially the speed function. In this paper, we introduce a threshold-based scheme that uses level sets for 3D tumor segmentation (TLS). In this scheme, the level set speed function is designed using a global threshold. This threshold is defined based on the idea of confidence interval and is iteratively updated throughout the evolution process. We propose two threshold-updating schemes, search-based and adaptive, that require different degrees of user involvement. TLS does not require explicit knowledge about the tumor and non-tumor density functions and can be implemented in an automatic or semi-automatic form depending on the complexity of the tumor shape. The proposed algorithm has been tested on magnetic resonance images of the head for tumor segmentation and its performance evaluated visually and quantitatively. The experimental results confirm the effectiveness of TLS and its superior performance when compared with a region-competition based method. © 2009 Elsevier B.V. All rights reserved.
Source Title: Image and Vision Computing
URI: http://scholarbank.nus.edu.sg/handle/10635/25569
ISSN: 02628856
DOI: 10.1016/j.imavis.2009.04.005
Appears in Collections:Staff Publications

Show full item record
Files in This Item:
There are no files associated with this item.

SCOPUSTM   
Citations

48
checked on Dec 5, 2017

WEB OF SCIENCETM
Citations

37
checked on Oct 31, 2017

Page view(s)

301
checked on Dec 9, 2017

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.