Please use this identifier to cite or link to this item: https://doi.org/10.1038/s41598-018-30353-5
Title: Laplace-domain diffuse optical measurement
Authors: Hasnain A. 
Mehta K. 
Zhou X.
Li H.
Chen N. 
Issue Date: 2018
Publisher: Nature Publishing Group
Citation: Hasnain A., Mehta K., Zhou X., Li H., Chen N. (2018). Laplace-domain diffuse optical measurement. Scientific Reports 8 (1) : 12134. ScholarBank@NUS Repository. https://doi.org/10.1038/s41598-018-30353-5
Abstract: Time-domain diffuse optical measurement systems determine depth-resolved absorption changes by using the time of flight distribution of the detected photons. It is well known that certain feature data, such as the Laplace transform of the temporal point spread function, is sufficient for image reconstruction and diffuse optical sensing. Conventional time-domain systems require the acquisition of full temporal profiles of diffusive photons and then numerically compute the feature dataset, for example, Laplace transformed intensities for imaging applications. We have proposed a novel method for directly obtaining the Laplace transform data. Our approach can significantly improve the data acquisition speed for time-domain diffuse optical imaging. We also demonstrated that the use of negative Laplace parameters can provide enhanced sensitivity to perturbations located in deep regions. © 2018, The Author(s).
Source Title: Scientific Reports
URI: http://scholarbank.nus.edu.sg/handle/10635/151966
ISSN: 20452322
DOI: 10.1038/s41598-018-30353-5
Appears in Collections:Elements
Staff Publications

Show full item record
Files in This Item:
File Description SizeFormatAccess SettingsVersion 
s41598-018-30353-5.pdf1.88 MBAdobe PDF

OPEN

NoneView/Download

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.