Please use this identifier to cite or link to this item: https://doi.org/10.1056/NEJMoa1110186
Title: Truncations of titin causing dilated cardiomyopathy
Authors: Herman D.S.
Lam L.
Taylor M.R.G.
Wang L.
Teekakirikul P.
Christodoulou D.
Conner L.
DePalma S.R.
McDonough B.
Sparks E.
Teodorescu D.L.
Cirino A.L.
Banner N.R.
Pennell D.J.
Graw S.
Merlo M.
Di Lenarda A.
Sinagra G.
Bos J.M.
Ackerman M.J.
Mitchell R.N.
Murry C.E.
Lakdawala N.K.
Ho C.Y.
Barton P.J.R.
Cook S.A. 
Mestroni L.
Seidman J.G.
Seidman C.E.
Issue Date: 2012
Publisher: Massachusetts Medical Society
Citation: Herman D.S., Lam L., Taylor M.R.G., Wang L., Teekakirikul P., Christodoulou D., Conner L., DePalma S.R., McDonough B., Sparks E., Teodorescu D.L., Cirino A.L., Banner N.R., Pennell D.J., Graw S., Merlo M., Di Lenarda A., Sinagra G., Bos J.M., Ackerman M.J., Mitchell R.N., Murry C.E., Lakdawala N.K., Ho C.Y., Barton P.J.R., Cook S.A., Mestroni L., Seidman J.G., Seidman C.E. (2012). Truncations of titin causing dilated cardiomyopathy. New England Journal of Medicine 366 (7) : 619-628. ScholarBank@NUS Repository. https://doi.org/10.1056/NEJMoa1110186
Abstract: Background: Dilated cardiomyopathy and hypertrophic cardiomyopathy arise from mutations in many genes. TTN, the gene encoding the sarcomere protein titin, has been insufficiently analyzed for cardiomyopathy mutations because of its enormous size. Methods: We analyzed TTN in 312 subjects with dilated cardiomyopathy, 231 subjects with hypertrophic cardiomyopathy, and 249 controls by using next-generation or dideoxy sequencing. We evaluated deleterious variants for cosegregation in families and assessed clinical characteristics. Results: We identified 72 unique mutations (25 nonsense, 23 frameshift, 23 splicing, and 1 large tandem insertion) that altered full-length titin. Among subjects studied by means of next-generation sequencing, the frequency of TTN mutations was significantly higher among subjects with dilated cardiomyopathy (54 of 203 [27%]) than among subjects with hypertrophic cardiomyopathy (3 of 231 [1%], P = 3�10-16) or controls (7 of 249 [3%], P = 9�10-14). TTN mutations cosegregated with dilated cardiomyopathy in families (combined lod score, 11.1) with high (>95%) observed penetrance after the age of 40 years. Mutations associated with dilated cardiomyopathy were overrepresented in the titin A-band but were absent from the Z-disk and M-band regions of titin (P?0.01 for all comparisons). Overall, the rates of cardiac outcomes were similar in subjects with and those without TTN mutations, but adverse events occurred earlier in male mutation carriers than in female carriers (P = 4�10-5). Conclusions: TTN truncating mutations are a common cause of dilated cardiomyopathy, occurring in approximately 25% of familial cases of idiopathic dilated cardiomyopathy and in 18% of sporadic cases. Incorporation of sequencing approaches that detect TTN truncations into genetic testing for dilated cardiomyopathy should substantially increase test sensitivity, thereby allowing earlier diagnosis and therapeutic intervention for many patients with dilated cardiomyopathy. Defining the functional effects of TTN truncating mutations should improve our understanding of the pathophysiology of dilated cardiomyopathy. (Funded by the Howard Hughes Medical Institute and others.). Copyright � 2012 Massachusetts Medical Society.
Source Title: New England Journal of Medicine
URI: http://scholarbank.nus.edu.sg/handle/10635/149988
ISSN: 00284793
DOI: 10.1056/NEJMoa1110186
Appears in Collections:Staff Publications

Show full item record
Files in This Item:
There are no files associated with this item.

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.