Please use this identifier to cite or link to this item: https://doi.org/10.5194/hess-17-2669-2013
Title: Assessing the predictive capability of randomized tree-based ensembles in streamflow modelling
Authors: Galelli, S. 
Castelletti, A.
Issue Date: 2013
Citation: Galelli, S., Castelletti, A. (2013). Assessing the predictive capability of randomized tree-based ensembles in streamflow modelling. Hydrology and Earth System Sciences 17 (7) : 2669-2684. ScholarBank@NUS Repository. https://doi.org/10.5194/hess-17-2669-2013
Abstract: Combining randomization methods with ensemble prediction is emerging as an effective option to balance accuracy and computational efficiency in data-driven modelling. In this paper, we investigate the prediction capability of extremely randomized trees (Extra-Trees), in terms of accuracy, explanation ability and computational efficiency, in a streamflow modelling exercise. Extra-Trees are a totally randomized tree-based ensemble method that (i) alleviates the poor generalisation property and tendency to overfitting of traditional standalone decision trees (e.g. CART); (ii) is computationally efficient; and, (iii) allows to infer the relative importance of the input variables, which might help in the ex-post physical interpretation of the model. The Extra-Trees potential is analysed on two real-world case studies-Marina catchment (Singapore) and Canning River (Western Australia)-representing two different morphoclimatic contexts. The evaluation is performed against other tree-based methods (CART and M5) and parametric data-driven approaches (ANNs and multiple linear regression). Results show that Extra-Trees perform comparatively well to the best of the benchmarks (i.e. M5) in both the watersheds, while outperforming the other approaches in terms of computational requirement when adopted on large datasets. In addition, the ranking of the input variable provided can be given a physically meaningful interpretation. © 2013 Author(s).
Source Title: Hydrology and Earth System Sciences
URI: http://scholarbank.nus.edu.sg/handle/10635/128679
ISSN: 10275606
DOI: 10.5194/hess-17-2669-2013
Appears in Collections:Staff Publications

Show full item record
Files in This Item:
There are no files associated with this item.

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.