Please use this identifier to cite or link to this item: https://doi.org/10.1007/s10126-010-9271-5
Title: Mapping QTL for an Adaptive Trait: The Length of Caudal Fin in Lates calcarifer
Authors: Wang, C.M.
Lo, L.C.
Zhu, Z.Y.
Pang, H.Y.
Liu, H.M.
Tan, J.
Lim, H.S.
Chou, R.
Orban, L. 
Yue, G.H.
Keywords: Evolution
Fish
QTL
Tail
Teleosts
Issue Date: Feb-2011
Citation: Wang, C.M., Lo, L.C., Zhu, Z.Y., Pang, H.Y., Liu, H.M., Tan, J., Lim, H.S., Chou, R., Orban, L., Yue, G.H. (2011-02). Mapping QTL for an Adaptive Trait: The Length of Caudal Fin in Lates calcarifer. Marine Biotechnology 13 (1) : 74-82. ScholarBank@NUS Repository. https://doi.org/10.1007/s10126-010-9271-5
Abstract: The caudal fin represents a fundamental design feature of fishes and plays an important role in locomotor dynamics in fishes. The shape of caudal is an important parameter in traditional systematics. However, little is known about genes involved in the development of different forms of caudal fins. This study was conducted to identify and map quantitative trait loci (QTL) affecting the length of caudal fin and the ratio between tail length and standard body length in Asian seabass (Lates calcarifer). One F1 family containing 380 offspring was generated by crossing two unrelated individuals. One hundred and seventeen microsatellites almost evenly distributed along the whole genome were genotyped. Length of caudal fin at 90 days post-hatch was measured. QTL analysis detected six significant (genome-wide significant) and two suggestive (linkage-group-wide significant) QTL on seven linkage groups. The six significant QTL explained 5.5-16.6% of the phenotypic variance, suggesting these traits were controlled by multiple genes. Comparative genomics analysis identified several potential candidate genes for the length of caudal fin. The QTL for the length of caudal fin detected for the first time in marine fish may provide a starting point for the future identification of genes involved in the development of different forms of caudal fins in fishes. © 2010 Springer Science+Business Media, LLC.
Source Title: Marine Biotechnology
URI: http://scholarbank.nus.edu.sg/handle/10635/126618
ISSN: 14362228
DOI: 10.1007/s10126-010-9271-5
Appears in Collections:Staff Publications

Show full item record
Files in This Item:
There are no files associated with this item.

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.