Please use this identifier to cite or link to this item: https://doi.org/10.1002/adsc.200900697
Title: Kinetic analysis of L-carnosine formation by β-aminopeptidases
Authors: Heck, T.
Makam, V.S. 
Lutz, J.
Blank, L.M.
Schmid, A.
Seebach, D.
Kohler, H.-P.E.
Geuekea, B.
Keywords: β-aminopeptidases
β-peptides
Enzymecatalyzed
L-carnosine
N-terminal nucleophile (Ntn) hydrolases
Nucleophile reactivity
Peptide synthesis
Issue Date: 15-Feb-2010
Citation: Heck, T., Makam, V.S., Lutz, J., Blank, L.M., Schmid, A., Seebach, D., Kohler, H.-P.E., Geuekea, B. (2010-02-15). Kinetic analysis of L-carnosine formation by β-aminopeptidases. Advanced Synthesis and Catalysis 352 (2-3) : 407-415. ScholarBank@NUS Repository. https://doi.org/10.1002/adsc.200900697
Abstract: The β,α-dipeptide L-carnosine occurs in high concentrations in long-lived innervated mammalian tissues and is widely sold as a food additive. On a large scale L-carnosine is produced by chemical synthesis procedures. We have established two aqueous enzymatic reaction systems for the preparation of L-carnosine using the dissolved bacterial β-aminopeptidases DmpA from Ochrobactrum anthropi and BapA from Sphingosinicella xenopeptidilytica as catalysts and investigated the kinetics of the enzymecatalyzed peptide couplings. DmpA catalyzed the formation of L-carnosine from C-terminally activated β-alanine derivatives (acyl donor) and L-histidine (acyl acceptor) in an aqueous reaction mixture at pH 10 with high catalytic rates (Vmax=19.2 mmol min-1 per mg of protein, k cat=12.9 s-1), whereas Vmax in the BapA-catalyzed coupling reaction remained below 1.4 mmol min-1 per mg of protein (k cat=0.87 s-1). Although the equilibrium of this reaction lies on the side of the hydrolysis products, the reaction is under kinetic control and L-carnosine temporarily accumulated to concentrations that correspond to yields of more than 50% with respect to the employed acyl donor. However, competing nucleophiles caused unwanted hydrolysis and coupling reactions that led to decreased product yield and to formation of various peptidic by-products. The substitution of l-histidine for L-histidine methyl ester as acyl acceptor shifted the pKa of the amino functionality from 9.25 to 6.97, which caused a drastic reduction in the amount of coupling by-products in an aqueous reaction system at pH 8. © 2010 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Source Title: Advanced Synthesis and Catalysis
URI: http://scholarbank.nus.edu.sg/handle/10635/125024
ISSN: 16154150
DOI: 10.1002/adsc.200900697
Appears in Collections:Staff Publications

Show full item record
Files in This Item:
There are no files associated with this item.

SCOPUSTM   
Citations

14
checked on Sep 10, 2018

WEB OF SCIENCETM
Citations

11
checked on Sep 10, 2018

Page view(s)

26
checked on Aug 16, 2018

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.