Please use this identifier to cite or link to this item: https://doi.org/10.1158/1541-7786.MCR-13-0024
Title: Unraveling the role of FOXQ1 in colorectal cancer metastasis
Authors: Abba, M.
Patil, N.
Rasheed, K. 
Nelson, L.D.
Mudduluru, G.
Leupold, J.H.
Allgayer, H.
Issue Date: Sep-2013
Citation: Abba, M., Patil, N., Rasheed, K., Nelson, L.D., Mudduluru, G., Leupold, J.H., Allgayer, H. (2013-09). Unraveling the role of FOXQ1 in colorectal cancer metastasis. Molecular Cancer Research 11 (9) : 1017-1028. ScholarBank@NUS Repository. https://doi.org/10.1158/1541-7786.MCR-13-0024
Abstract: Malignant cell transformation, invasion, and metastasis are dependent on the coordinated rewiring of gene expression. A major component in the scaffold of these reprogramming events is one in which epithelial cells lose intercellular connections and polarity to adopt a more motile mesenchymal phenotype, which is largely supported by a robust transcriptional machinery consisting mostly of developmental transcription factors. This study demonstrates that the winged helix transcription factor, FOXQ1, contributes to this rewiring process, in part by directly modulating the transcription of TWIST1, itself a key mediator of metastasis that transcriptionally regulates the expression of importantmolecules involved in epithelial-to-mesenchymal transition. Forced expression and RNA-mediated silencing of FOXQ1 led to enhanced and suppressed mRNA and protein levels of TWIST1, respectively. Mechanistically, FOXQ1 enhanced the reporter activity of TWIST1 and directly interacted with its promoter. Furthermore, enhanced expression of FOXQ1 resulted in increased migration and invasion in colorectal cancer cell lines, whereas knockdown studies showed the opposite effect. Moreover, using the in vivo chicken chorioallantoic membrane metastasis assay model, FOXQ1 significantly enhanced distant metastasis with minimal effects on tumor growth. Implications: These findings reveal FOXQ1 as a modulator of TWIST1-mediated metastatic phenotypes and support its potential as a biomarker of metastasis. © 2013 American Association for Cancer Research.
Source Title: Molecular Cancer Research
URI: http://scholarbank.nus.edu.sg/handle/10635/124779
ISSN: 15417786
DOI: 10.1158/1541-7786.MCR-13-0024
Appears in Collections:Staff Publications

Show full item record
Files in This Item:
There are no files associated with this item.

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.