Please use this identifier to cite or link to this item: https://doi.org/10.1007/978-3-642-25510-6-23
Title: The complexity of approximate Nash equilibrium in congestion games with negative delays
Authors: Magniez, F.
De Rougemont, M.
Santha, M. 
Zeitoun, X.
Issue Date: 2011
Citation: Magniez, F.,De Rougemont, M.,Santha, M.,Zeitoun, X. (2011). The complexity of approximate Nash equilibrium in congestion games with negative delays. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) 7090 LNCS : 266-277. ScholarBank@NUS Repository. https://doi.org/10.1007/978-3-642-25510-6-23
Abstract: We extend the study of the complexity of computing an ε-approximate Nash equilibrium in symmetric congestion games from the case of positive delay functions to delays of arbitrary sign. Our results show that with this extension the complexity has a richer structure, and it depends on the exact nature of the signs allowed. We first prove that in symmetric games with increasing delay functions and with α-bounded jump the ε-Nash dynamic converges in polynomial time when all delays are negative, similarly to the case of positive delays. We are able to extend this result to monotone delay functions. We then establish a hardness result for symmetric games with increasing delay functions and with α-bounded jump when the delays can be both positive and negative: in that case computing an ε-approximate Nash equilibrium becomes PLS-complete, even if each delay function is of constant sign or of constant absolute value. © 2011 Springer-Verlag Berlin Heidelberg.
Source Title: Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
URI: http://scholarbank.nus.edu.sg/handle/10635/116790
ISBN: 9783642255090
ISSN: 03029743
DOI: 10.1007/978-3-642-25510-6-23
Appears in Collections:Staff Publications

Show full item record
Files in This Item:
There are no files associated with this item.

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.