Please use this identifier to cite or link to this item:
Title: Phase-space characterization of complexity in quantum many-body dynamics
Authors: Balachandran, V.
Benenti, G.
Casati, G. 
Gong, J. 
Issue Date: 20-Oct-2010
Citation: Balachandran, V., Benenti, G., Casati, G., Gong, J. (2010-10-20). Phase-space characterization of complexity in quantum many-body dynamics. Physical Review E - Statistical, Nonlinear, and Soft Matter Physics 82 (4) : -. ScholarBank@NUS Repository.
Abstract: We propose a phase-space Wigner harmonics entropy measure for many-body quantum dynamical complexity. This measure, which reduces to the well-known measure of complexity in classical systems and which is valid for both pure and mixed states in single-particle and many-body systems, takes into account the combined role of chaos and entanglement in the realm of quantum mechanics. The effectiveness of the measure is illustrated in the example of the Ising chain in a homogeneous tilted magnetic field. We provide numerical evidence that the multipartite entanglement generation leads to a linear increase in entropy until saturation in both integrable and chaotic regimes, so that in both cases the number of harmonics of the Wigner function grows exponentially with time. The entropy growth rate can be used to detect quantum phase transitions. The proposed entropy measure can also distinguish between integrable and chaotic many-body dynamics by means of the size of long-term fluctuations which become smaller when quantum chaos sets in. © 2010 The American Physical Society.
Source Title: Physical Review E - Statistical, Nonlinear, and Soft Matter Physics
ISSN: 15393755
DOI: 10.1103/PhysRevE.82.046216
Appears in Collections:Staff Publications

Show full item record
Files in This Item:
There are no files associated with this item.


checked on Jan 12, 2019


checked on Jan 2, 2019

Page view(s)

checked on Nov 16, 2018

Google ScholarTM



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.