Please use this identifier to cite or link to this item:
Title: Human bone marrow-derived mesenchymal stem cells suppress human glioma growth through inhibition of angiogenesis
Authors: Ho, I.A.W.
Toh, H.C.
Ng, W.H.
Teo, Y.L.
Guo, C.M.
Hui, K.M. 
Lam, P.Y.P.
Keywords: Angiogenesis
Mesenchymal stem cells
Platelet derived growth factor
Issue Date: Jan-2013
Source: Ho, I.A.W., Toh, H.C., Ng, W.H., Teo, Y.L., Guo, C.M., Hui, K.M., Lam, P.Y.P. (2013-01). Human bone marrow-derived mesenchymal stem cells suppress human glioma growth through inhibition of angiogenesis. Stem Cells 31 (1) : 146-155. ScholarBank@NUS Repository.
Abstract: Tumor tropism of human bone marrow-derived mesenchymal stem cells (MSC) has been exploited for the delivery of therapeutic genes for anticancer therapy. However, the exact contribution of these cells in the tumor microenvironment remains unknown. In this study, we examined the biological effect of MSC on tumor cells. The results showed that MSC inhibited the growth of human glioma cell lines and patient-derived primary glioma cells in vitro. Coadministration of MSC and glioma cells resulted in significant reduction in tumor volume and vascular density, which was not observed when glioma was injected with immortalized normal human astrocytes. Using endothelial progenitor cells (EPC) from healthy donors and HUVEC endothelial cells, the extent of EPC recruitment and capacity to form endothelial tubes was significantly impaired in conditioned media derived from MSC/glioma coculture, suggesting that MSC suppressed tumor angiogenesis through the release of antiangiogenic factors. Further studies using antibody array showed reduced expression of platelet-derived growth factor (PDGF)-BB and interleukin (IL)-1β in MSC/glioma coculture when compared with controls. In MSC/glioma coculture, PDGF-BB mRNA and the corresponding proteins (soluble and membrane bound forms) as well as the receptors were found to be significantly downregulated when compared with that of glioma cocultured with normal human astrocytes or glioma monoculture. Furthermore, IL-1β, phosphorylated Akt, and cathepsin B proteins were also reduced in MSC/glioma. Taken together, these data indicated that the antitumor effect of MSC may be mediated through downregulation of PDGF/PDGFR axis, which is known to play a key role in glioma angiogenesis. © AlphaMed Press.
Source Title: Stem Cells
ISSN: 10665099
DOI: 10.1002/stem.1247
Appears in Collections:Staff Publications

Show full item record
Files in This Item:
There are no files associated with this item.


checked on Mar 8, 2018


checked on Feb 7, 2018

Page view(s)

checked on Mar 12, 2018

Google ScholarTM



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.